Menu Close

Category: Integration

find-z-1-1-cosz-z-2-dz-

Question Number 130392 by mathmax by abdo last updated on 25/Jan/21 $$\mathrm{find}\:\int_{\mid\mathrm{z}\mid=\mathrm{1}} \:\:\frac{\mathrm{1}−\mathrm{cosz}}{\mathrm{z}^{\mathrm{2}} }\mathrm{dz} \\ $$ Answered by mohammad17 last updated on 25/Jan/21 $${hello}\:{sir}\:{can}\:{you}\:{help}\:{me}\:{in}\:{Q}\:\mathrm{130416} \\…

calculate-0-cos-abx-x-2-ax-1-x-2-bx-1-with-a-and-b-real-and-a-lt-2-b-lt-2-

Question Number 130387 by Bird last updated on 25/Jan/21 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({abx}\right)}{\left({x}^{\mathrm{2}} +{ax}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +{bx}+\mathrm{1}\right)} \\ $$$${with}\:{a}\:{and}\:{b}\:{real}\:{and}\:\mid{a}\mid<\mathrm{2},\mid{b}\mid<\mathrm{2} \\ $$ Commented by mathmax by abdo last updated…

let-A-0-pi-dx-cosx-sinx-R-1-find-a-explicit-form-of-A-2-find-also-B-0-pi-dx-cosx-sinx-2-3-calculate-0-pi-dx-2-cosx-sinx-and-0-pi-dx

Question Number 64850 by mathmax by abdo last updated on 22/Jul/19 $${let}\:{A}_{\lambda} \:=\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\lambda\:\:+{cosx}\:+{sinx}}\:\:\:\:\left(\lambda\:\in\:{R}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{A}_{\lambda} \\ $$$$\left.\mathrm{2}\right)\:\:{find}\:{also}\:{B}_{\lambda} \:=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\left(\lambda\:+{cosx}\:+{sinx}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}}…

find-dx-1-cosx-cos-2x-

Question Number 64818 by mathmax by abdo last updated on 22/Jul/19 $${find}\:\int\:\:\:\frac{{dx}}{\mathrm{1}+{cosx}\:+{cos}\left(\mathrm{2}{x}\right)} \\ $$ Commented by mathmax by abdo last updated on 22/Jul/19 $${let}\:{I}\:=\int\:\frac{{dx}}{\mathrm{1}+{cosx}\:+{cos}\left(\mathrm{2}{x}\right)}\:\Rightarrow\:{I}\:=\int\:\frac{{dx}}{\mathrm{1}+{cosx}+\mathrm{2}{cos}^{\mathrm{2}} {x}−\mathrm{1}}…