Menu Close

Category: Integration

0-1-ln-x-dx-

Question Number 93248 by i jagooll last updated on 12/May/20 $$\int\underset{\mathrm{0}} {\overset{\mathrm{1}} {\:}}\:\mathrm{ln}\left(\mathrm{x}\right)\:\mathrm{dx}\: \\ $$ Commented by abdomathmax last updated on 12/May/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){dx}\:={lim}_{{a}\rightarrow\mathrm{0}^{+}…

1-calculate-0-1-0-pi-2-dxdy-1-xtany-2-2-find-the-value-of-0-pi-2-t-tant-dt-

Question Number 27693 by abdo imad last updated on 12/Jan/18 $$\left.\mathrm{1}\right)\:{calculate}\:\:\int\int_{\left.\right]\left.\mathrm{0}\left.,\left.\mathrm{1}\right]×\right]\mathrm{0},\frac{\pi}{\mathrm{2}}\right]} \:\:\:\frac{{dxdy}}{\mathrm{1}+\left({xtany}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{t}}{{tant}}{dt}\:. \\ $$ Commented by abdo imad last updated…

let-give-A-0-y-x-1-dxdxy-1-x-2-1-y-2-and-B-0-pi-4-ln-2cos-2-2cos-2-d-calculate-A-and-prove-that-B-A-

Question Number 27691 by abdo imad last updated on 12/Jan/18 $${let}\:{give}\:\:{A}=\int\int_{\mathrm{0}\leqslant{y}\leqslant{x}\leqslant\mathrm{1}} \:\:\:\:\:\:\frac{{dxdxy}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)}\:\:{and} \\ $$$${B}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{ln}\left(\mathrm{2}{cos}^{\mathrm{2}} \theta\right)}{\mathrm{2}{cos}\left(\mathrm{2}\theta\right)}{d}\theta\:\:{calculate}\:{A}\:{and}\:{prove}\:{that}\:{B}={A}. \\ $$ Commented by abdo imad…

Question-93225

Question Number 93225 by Ajao yinka last updated on 11/May/20 Commented by prakash jain last updated on 12/May/20 $$\mathrm{1}+{x}+…+{x}^{{n}} \:\mathrm{has}\:\mathrm{no}\:\mathrm{root}\:\mathrm{in}\:\mathbb{R}\:\mathrm{for}\:{n}\:\mathrm{even} \\ $$$$\int_{−\infty} ^{\infty} {x}^{{n}} \delta\left(\mathrm{1}+{x}+…+{x}^{{n}}…

find-I-D-ln-1-x-y-dxdy-with-D-x-y-R-2-x-y-1-and-x-0-and-y-0-

Question Number 27690 by abdo imad last updated on 12/Jan/18 $${find}\:\:\:{I}=\:\:\int\int_{{D}} {ln}\left(\mathrm{1}+{x}+{y}\right){dxdy}\:\:{with} \\ $$$${D}=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:\:\:/\:\:{x}+{y}\leqslant\mathrm{1}\:{and}\:{x}\geqslant\mathrm{0}\:{and}\:{y}\geqslant\mathrm{0}\:\right\}. \\ $$ Commented by abdo imad last updated on 14/Jan/18…

Question-93227

Question Number 93227 by Ajao yinka last updated on 11/May/20 Commented by prakash jain last updated on 12/May/20 $$\mathrm{2}\int_{−\infty} ^{+\infty} {x}^{\mathrm{4}} \delta\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \right){dx}=\mathrm{2}×\left(\frac{\mathrm{2}}{\mathrm{4}}\right)=\mathrm{1} \\…

1-prove-the-existence-of-the-integral-I-0-pi-2-ln-1-cosx-cosx-dx-2-prove-that-I-D-siny-1-cosx-cosy-dxdy-with-D-0-pi-2-2-3-find-the-value-of-I-

Question Number 27684 by abdo imad last updated on 12/Jan/18 $$\left.\mathrm{1}\right)\:{prove}\:{the}\:{existence}\:{of}\:{the}\:{integral} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{ln}\left(\mathrm{1}+{cosx}\right)}{{cosx}}{dx} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{I}=\:\int\int_{{D}} \:\:\frac{{siny}}{\mathrm{1}+{cosx}\:{cosy}}{dxdy}\:{with}\: \\ $$$${D}=\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]^{\mathrm{2}} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:{I}. \\ $$ Commented…

Question-158742

Question Number 158742 by cortano last updated on 08/Nov/21 Commented by HongKing last updated on 08/Nov/21 $$=\:\frac{\mathrm{2}}{\mathrm{5}}\:\left(\mathrm{x}^{\mathrm{6}} \:+\:\mathrm{x}^{\mathrm{4}} \:+\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }\right)^{\frac{\mathrm{5}}{\mathrm{4}}} +\:\mathbb{C} \\ $$ Answered by…

let-give-I-n-0-1-x-n-1-x-n-dx-1-prove-that-lim-n-gt-I-n-0-2-calculate-I-n-I-n-1-3-find-n-1-1-n-1-n-

Question Number 27666 by abdo imad last updated on 12/Jan/18 $${let}\:{give}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{n}} }{\mathrm{1}+{x}^{{n}} }{dx} \\ $$$$\left(\mathrm{1}\right)\:{prove}\:{that}\:\:{lim}_{{n}−>\propto} {I}_{{n}} =\mathrm{0} \\ $$$$\left(\mathrm{2}\right){calculate}\:{I}_{{n}} \:+{I}_{{n}+\mathrm{1}} \\ $$$$\left(\mathrm{3}\right)\:{find}\:\:\sum_{{n}=\mathrm{1}}…