Menu Close

Category: Integration

let-give-0-lt-lt-1-1-prove-that-pi-coth-pi-1-n-1-2-2-n-2-2-by-integration-on-0-1-find-n-1-1-1-n-2-

Question Number 29975 by abdo imad last updated on 14/Feb/18 $$\:{let}\:{give}\:\mathrm{0}<\alpha<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\pi\:{coth}\left(\pi\alpha\right)\:−\frac{\mathrm{1}}{\alpha}\:=\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{2}\alpha}{\alpha^{\mathrm{2}} \:+{n}^{\mathrm{2}} }. \\ $$$$\left.\mathrm{2}\right){by}\:{integration}\:{on}\left[\mathrm{0},\mathrm{1}\right]\:{find}\:\prod_{{n}=\mathrm{1}} ^{\infty} \:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right). \\ $$ Commented…

0-1-ln-ln-x-1-x-dx-1-2-ln-2-2-

Question Number 160982 by mnjuly1970 last updated on 10/Dec/21 $$ \\ $$$$\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}\:\left(−{ln}\:\left({x}\right)\right)}{\mathrm{1}+{x}}\:{dx}\:\overset{?} {=}\frac{−\mathrm{1}}{\mathrm{2}}\:{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

0-1-x-n-1-ln-1-x-dx-n-1-

Question Number 160979 by amin96 last updated on 10/Dec/21 $$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}−\mathrm{1}} \boldsymbol{\mathrm{ln}}\left(\mathrm{1}−\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}}=???\:\:\: \\ $$$$\boldsymbol{\mathrm{n}}\geqslant\mathrm{1} \\ $$ Answered by qaz last updated on 10/Dec/21 $$\Omega=−\underset{\mathrm{k}=\mathrm{1}}…