Menu Close

Category: Integration

prove-that-n-1-H-n-F-n-2-n-ln-4-12-5-ln-Golden-ratio-F-n-fibonacci-numbers-

Question Number 158320 by mnjuly1970 last updated on 02/Nov/21 $$ \\ $$$$\:\:\:{prove}\:\:{that}\:: \\ $$$$ \\ $$$$\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\mathrm{H}_{\:{n}} .\:\mathrm{F}_{{n}} }{\mathrm{2}^{\:{n}} }\:\:=\:{ln}\left(\mathrm{4}\right)\:+\:\frac{\mathrm{12}}{\:\sqrt{\mathrm{5}}}\:{ln}\left(\:\varphi\:\right) \\ $$$$\:\:\:\:\:\varphi\::\:\:\:\mathrm{Golden}\:\:\mathrm{ratio} \\ $$$$\:\:\:\:\:\:\mathrm{F}_{\:{n}}…

Question-92772

Question Number 92772 by Power last updated on 09/May/20 Commented by mathmax by abdo last updated on 09/May/20 $${A}\:=\int_{\mathrm{0}} ^{\mathrm{6}} \:\left[{x}\right]\:{sin}\left(\frac{\pi{x}}{\mathrm{6}}\right){dx}\:\Rightarrow\:{A}\:=\sum_{{k}=\mathrm{0}} ^{\mathrm{5}} \:\int_{{k}} ^{{k}+\mathrm{1}} \:{k}\:{sin}\left(\frac{\pi{x}}{\mathrm{6}}\right){dx}…

Question-158288

Question Number 158288 by cortano last updated on 02/Nov/21 Answered by mr W last updated on 02/Nov/21 $${y}_{\mathrm{1}} −{y}_{\mathrm{2}} ={ax}^{\mathrm{2}} −{ax}−\mathrm{2}{a}={a}\left({x}^{\mathrm{2}} −{x}−\mathrm{2}\right) \\ $$$$\Delta={a}^{\mathrm{2}} +\mathrm{8}{a}^{\mathrm{2}}…

Question-92723

Question Number 92723 by Power last updated on 08/May/20 Answered by Rio Michael last updated on 08/May/20 $$\int\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}\:\mathrm{let}\:{x}\:=\:\mathrm{2}\:\mathrm{sec}\:{u} \\ $$$$\Rightarrow\:\frac{{dx}}{{du}}\:=\:\mathrm{2}\:\mathrm{sec}\:{u}\:\mathrm{tan}\:{u} \\ $$$$\Rightarrow\:{dx}\:=\:\mathrm{2}\:\mathrm{sec}\:{u}\:\mathrm{tan}\:{u}\:{du} \\ $$$$\:\int\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}}…