Menu Close

Category: Integration

x-2-x-21-2x-3-x-2-8x-4-dx-

Question Number 158176 by Odhiambojr last updated on 31/Oct/21 $$\int\left\{\frac{{x}^{\mathrm{2}} −{x}−\mathrm{21}}{\mathrm{2}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +\mathrm{8}{x}−\mathrm{4}}\right\}{dx}\: \\ $$ Answered by MJS_new last updated on 31/Oct/21 $$=\int\frac{{x}^{\mathrm{2}} −{x}−\mathrm{21}}{\left(\mathrm{2}{x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{dx}=…

dx-3-tan-x-

Question Number 158159 by cortano last updated on 31/Oct/21 $$\:\:\:\:\:\:\int\:\frac{{dx}}{\mathrm{3}−\mathrm{tan}\:{x}}\:=? \\ $$ Answered by peter frank last updated on 31/Oct/21 $$\int\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{3cos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}}\mathrm{dx} \\ $$$$\mathrm{t}−\mathrm{substitution} \\ $$$$\mathrm{t}=\mathrm{tan}\:\frac{\mathrm{x}}{\mathrm{2}}…

f-x-x-x-where-x-is-the-greatest-integer-function-and-3-x-3-a-sketch-f-x-b-state-the-domain-of-f-x-c-study-the-continuity-of-f-x-on-its-domain-d-state-the-range-of-f-x-

Question Number 158142 by alcohol last updated on 31/Oct/21 $${f}\left({x}\right)={x}−\left[{x}\right]\:{where}\:\left[{x}\right]\:{is}\:{the}\:{greatest} \\ $$$${integer}\:{function}\:{and}\:−\mathrm{3}\leqslant{x}\leqslant\mathrm{3} \\ $$$$\left.{a}\right)\:{sketch}\:{f}\left({x}\right) \\ $$$$\left.{b}\right)\:{state}\:{the}\:{domain}\:{of}\:{f}\left({x}\right) \\ $$$$\left.{c}\right)\:{study}\:{the}\:{continuity}\:{of}\:{f}\left({x}\right)\:{on}\:{its}\:{domain} \\ $$$$\left.{d}\right)\:{state}\:{the}\:{range}\:{of}\:{f}\left({x}\right) \\ $$ Terms of Service…

xy-1-x-2-dy-dx-x-0-y-1-

Question Number 27032 by cmaxamuud98 @gmail.com last updated on 01/Jan/18 $${xy}=\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\frac{{dy}}{{dx}}\:\:\:\:{x}=\mathrm{0}\:{y}=\mathrm{1} \\ $$ Commented by abdo imad last updated on 01/Jan/18 $${e}.{d}\Rightarrow\:\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right){y}^{'} \:−{xy}\:=\mathrm{0}\:{with}\:{y}\left(\mathrm{0}\right)=\mathrm{1}…

xy-1-x-2-dy-dx-x-0-y-1-

Question Number 27031 by cmaxamuud98 @gmail.com last updated on 01/Jan/18 $${xy}=\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\frac{{dy}}{{dx}}\:\:\:\:{x}=\mathrm{0}\:{y}=\mathrm{1} \\ $$ Answered by mrW1 last updated on 01/Jan/18 $$\frac{{dy}}{{y}}=\frac{{xdx}}{\mathrm{1}−{x}^{\mathrm{2}} }=−\frac{\mathrm{1}}{\mathrm{2}}×\frac{{d}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{1}−{x}^{\mathrm{2}} }…

1-find-dx-x-2-3-x-2-1-2-2-calculate-2-dx-x-2-3-x-2-1-2-

Question Number 92539 by mathmax by abdo last updated on 07/May/20 $$\left.\mathrm{1}\right)\:{find}\:\int\:\:\:\:\:\frac{{dx}}{\left({x}+\mathrm{2}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\frac{{dx}}{\left({x}+\mathrm{2}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$ Terms…