Menu Close

Category: Integration

prove-that-0-t-x-1-e-t-1-dt-x-x-with-x-n-1-1-n-x-and-x-0-t-x-1-e-t-dt-x-gt-1-

Question Number 27345 by abdo imad last updated on 05/Jan/18 $${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{x}−\mathrm{1}} }{{e}^{{t}} −\mathrm{1}}{dt}\:\:=\xi\left({x}\right)\Gamma\left({x}\right) \\ $$$${with}\:\xi\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\propto} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:{and}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt} \\…

find-f-x-0-e-x-1-t-2-1-t-2-dt-interms-ofx-with-x-0-and-calculate-0-e-t-2-dt-

Question Number 27342 by abdo imad last updated on 05/Jan/18 $${find}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} }{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:\:{interms}\:{ofx} \\ $$$${with}\:{x}\geqslant\mathrm{0}\:\:\:{and}\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:. \\ $$ Commented…

1-pi-2-pi-1-y-2-x-2-cos-y-x-dx-sin-y-x-y-x-cos-y-x-dy-

Question Number 158402 by amin96 last updated on 03/Nov/21 $$\int_{\left(\mathrm{1};\pi\right)} ^{\left(\mathrm{2};\pi\right)} \left(\mathrm{1}−\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }{cos}\left(\frac{{y}}{{x}}\right)\right){dx}+\left({sin}\left(\frac{{y}}{{x}}\right)+\frac{{y}}{{x}}{cos}\left(\frac{{y}}{{x}}\right)\right){dy}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

log-2-x-2-dx-

Question Number 27282 by hp killer last updated on 04/Jan/18 $$\int{log}\left(\mathrm{2}+{x}^{\mathrm{2}} \right){dx} \\ $$ Commented by abdo imad last updated on 04/Jan/18 $${if}\:{you}\:{mean}\:{ln}\:{integrate}\:{par}\:{parts}\:{u}^{'} =\mathrm{1}\:{and}\:{v}={ln}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)…

Evaluate-R-xy-1-y-2-dx-dy-where-the-region-of-integration-is-the-positive-quadrant-of-the-circle-x-2-y-2-1-

Question Number 92805 by niroj last updated on 09/May/20 $$\:\mathrm{Evaluate}: \\ $$$$\:\int_{\boldsymbol{\mathrm{R}}} \int\:\frac{\boldsymbol{\mathrm{xy}}}{\:\sqrt{\mathrm{1}−\boldsymbol{\mathrm{y}}^{\mathrm{2}} }}\:\boldsymbol{\mathrm{dx}}\:\boldsymbol{\mathrm{dy}}\:\mathrm{where}\:\mathrm{the}\:\mathrm{region}\:\mathrm{of}\:\mathrm{integration}\:\mathrm{is}\:\mathrm{the} \\ $$$$\:\mathrm{positive}\:\mathrm{quadrant}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{1}. \\ $$$$ \\ $$ Answered by mr…