Question Number 27345 by abdo imad last updated on 05/Jan/18 $${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{x}−\mathrm{1}} }{{e}^{{t}} −\mathrm{1}}{dt}\:\:=\xi\left({x}\right)\Gamma\left({x}\right) \\ $$$${with}\:\xi\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\propto} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:{and}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt} \\…
Question Number 27342 by abdo imad last updated on 05/Jan/18 $${find}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} }{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:\:{interms}\:{ofx} \\ $$$${with}\:{x}\geqslant\mathrm{0}\:\:\:{and}\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:. \\ $$ Commented…
Question Number 27341 by abdo imad last updated on 05/Jan/18 $${prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({t}^{\mathrm{2}} \:+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)} {dt}\:{is}\:{convergeny} \\ $$$${and}\:{find}\:{its}\:{value}\:. \\ $$ Terms of Service Privacy Policy…
Question Number 158405 by Eric002 last updated on 03/Nov/21 $${prove}: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{x}^{\mathrm{5}} +{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx}=\frac{\pi}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$ Answered by MJS_new last updated…
Question Number 92869 by phenom last updated on 09/May/20 $$\int\frac{−{t}^{\mathrm{3}} +\mathrm{2}{t}−{t}+\mathrm{1}}{{t}\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{dt} \\ $$ Commented by phenom last updated on 09/May/20 $${yh}\:{it}\:{is}\:\mathrm{2}{t}^{\mathrm{2}} \:{sorry} \\ $$…
Question Number 158402 by amin96 last updated on 03/Nov/21 $$\int_{\left(\mathrm{1};\pi\right)} ^{\left(\mathrm{2};\pi\right)} \left(\mathrm{1}−\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }{cos}\left(\frac{{y}}{{x}}\right)\right){dx}+\left({sin}\left(\frac{{y}}{{x}}\right)+\frac{{y}}{{x}}{cos}\left(\frac{{y}}{{x}}\right)\right){dy}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 27309 by abdo imad last updated on 04/Jan/18 $${find}\:{the}\:{value}\:\:{of}\:\:\int_{\mathrm{0}} ^{\propto} \:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}\: \\ $$ Answered by prakash jain last updated on 05/Jan/18…
Question Number 27282 by hp killer last updated on 04/Jan/18 $$\int{log}\left(\mathrm{2}+{x}^{\mathrm{2}} \right){dx} \\ $$ Commented by abdo imad last updated on 04/Jan/18 $${if}\:{you}\:{mean}\:{ln}\:{integrate}\:{par}\:{parts}\:{u}^{'} =\mathrm{1}\:{and}\:{v}={ln}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)…
Question Number 27271 by GANGADHARSETHI last updated on 04/Jan/18 $$\boldsymbol{{P}}{roof}\: \\ $$$$\int\frac{\mathrm{1}}{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }{dx}\:=\frac{\mathrm{1}}{\mathrm{2}{a}}{ln}\mid\frac{{a}+{x}}{{a}−{x}}\mid+{c} \\ $$ Answered by sma3l2996 last updated on 04/Jan/18 $$\int\frac{{dx}}{{a}^{\mathrm{2}} −{x}^{\mathrm{2}}…
Question Number 92805 by niroj last updated on 09/May/20 $$\:\mathrm{Evaluate}: \\ $$$$\:\int_{\boldsymbol{\mathrm{R}}} \int\:\frac{\boldsymbol{\mathrm{xy}}}{\:\sqrt{\mathrm{1}−\boldsymbol{\mathrm{y}}^{\mathrm{2}} }}\:\boldsymbol{\mathrm{dx}}\:\boldsymbol{\mathrm{dy}}\:\mathrm{where}\:\mathrm{the}\:\mathrm{region}\:\mathrm{of}\:\mathrm{integration}\:\mathrm{is}\:\mathrm{the} \\ $$$$\:\mathrm{positive}\:\mathrm{quadrant}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{1}. \\ $$$$ \\ $$ Answered by mr…