Menu Close

Category: Integration

let-f-a-0-1-ln-1-x-a-1-x-dx-with-a-gt-0-1-explicite-f-a-2-find-g-a-0-1-1-x-1-x-a-1-x-dx-3-find-the-value-of-0-1-ln-1-x-2-1-x-dx-and-0-1-ln-

Question Number 92407 by mathmax by abdo last updated on 06/May/20 $${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\sqrt{\mathrm{1}+{x}}+{a}\sqrt{\mathrm{1}−{x}}\right){dx}\:\:\:{with}\:\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right){explicite}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\sqrt{\mathrm{1}−{x}}}{\:\sqrt{\mathrm{1}+{x}}+{a}\sqrt{\mathrm{1}−{x}}}\:{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\sqrt{\mathrm{1}+{x}}+\mathrm{2}\sqrt{\mathrm{1}−{x}}\right){dx} \\…

prove-that-tan-1-xy-rz-tan-1-xz-ry-tan-1-yz-rx-pi-2-

Question Number 157932 by cortano last updated on 30/Oct/21 $${prove}\:{that}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{{xy}}{{rz}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{{xz}}{{ry}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{{yz}}{{rx}}\right)=\frac{\pi}{\mathrm{2}} \\ $$ Commented by cortano last updated on 30/Oct/21 $${no}\:{sir}.\:{only}\:{it}\:{condition} \\ $$…

dx-sin-x-sec-x-using-wiestress-substitution-

Question Number 157929 by akolade last updated on 30/Oct/21 $$\int\frac{\mathrm{dx}}{\mathrm{sin}\:\mathrm{x}+\:\mathrm{sec}\:\mathrm{x}} \\ $$$$\mathrm{using}\:\mathrm{wiestress}\:\mathrm{substitution} \\ $$ Commented by cortano last updated on 30/Oct/21 $${C}\:=\:\int\:\frac{\mathrm{1}}{\:\mathrm{sin}\:{x}+\mathrm{sec}\:{x}}\:{dx}\: \\ $$$$\:\left[\:\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:=\:{u}\:\rightarrow\begin{cases}{\mathrm{sin}\:{x}\:=\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}\\{\mathrm{cos}\:{x}=\frac{\mathrm{1}−{u}^{\mathrm{2}}…

1-x-1-x-2-dx-x-sin-w-cos-w-dw-sin-w-cos-w-dw-tan-w-1-sec-2-w-dw-tan-w-1-sec-2-w-du-u-1-u-2-1-u-tan-w-du-2-u-1-u-du-

Question Number 92397 by john santu last updated on 06/May/20 $$\int\:\frac{\mathrm{1}}{{x}−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{dx}\: \\ $$$$\left[\:{x}\:=\:\mathrm{sin}\:{w}\:\right]\: \\ $$$$\int\:\frac{\mathrm{cos}\:\mathrm{w}\:\mathrm{dw}}{\mathrm{sin}\:\mathrm{w}−\mathrm{cos}\:\mathrm{w}}\:=\:\int\:\frac{\mathrm{dw}}{\mathrm{tan}\:\mathrm{w}−\mathrm{1}} \\ $$$$=\:\int\:\frac{\mathrm{sec}^{\mathrm{2}} \:\mathrm{w}\:\mathrm{dw}}{\left(\mathrm{tan}\:\mathrm{w}−\mathrm{1}\right)\mathrm{sec}^{\mathrm{2}} \:\mathrm{w}} \\ $$$$=\:\int\:\frac{\mathrm{du}}{\left(\mathrm{u}−\mathrm{1}\right)\left(\mathrm{u}^{\mathrm{2}} +\mathrm{1}\right)}\:;\:\left[\:\mathrm{u}\:=\:\mathrm{tan}\:\mathrm{w}\:\right]\: \\ $$$$=\:\int\:\frac{\mathrm{du}}{\mathrm{2}\left(\mathrm{u}−\mathrm{1}\right)}−\int\:\frac{\mathrm{u}\:\mathrm{du}\:}{\mathrm{2}\left(\mathrm{u}^{\mathrm{2}}…

ln-1-x-1-x-dx-

Question Number 92394 by john santu last updated on 06/May/20 $$\int\:\mathrm{ln}\:\left(\sqrt{\mathrm{1}−{x}}\:+\:\sqrt{\mathrm{1}+{x}}\:\right)\:{dx}\: \\ $$ Commented by mathmax by abdo last updated on 06/May/20 $${I}\:=\int{ln}\left(\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}\right){dx}\:\:{by}\:{parts}\: \\ $$$${I}\:={x}\left(\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}\right)−\int\:{x}\frac{\left(\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}\right)^{'}…