Question Number 130486 by benjo_mathlover last updated on 26/Jan/21 $$\:\int_{\mathrm{0}} ^{\:{x}} \:\frac{\mathrm{cos}\:{t}\:\sqrt[{\mathrm{4}}]{\mathrm{sin}^{\mathrm{3}} \:{t}}}{\left(\mathrm{sin}\:{x}−\mathrm{sin}\:{t}\right)^{\mathrm{3}/\mathrm{4}} }\:{dt}\:? \\ $$ Answered by MJS_new last updated on 26/Jan/21 $$\int\mathrm{cos}\:{t}\:\left(\frac{\mathrm{sin}\:{t}}{\mathrm{sin}\:{x}\:−\mathrm{sin}\:{t}}\right)^{\mathrm{3}/\mathrm{4}} {dt}=…
Question Number 130485 by benjo_mathlover last updated on 26/Jan/21 $$\:\digamma\:=\:\int_{\mathrm{0}} ^{\:\infty} {x}^{\mathrm{5}\:} \mathrm{ln}\:\left({x}\right)\mathrm{cos}\:\left({x}\right){e}^{−{x}} \:{dx}\:? \\ $$ Answered by Dwaipayan Shikari last updated on 26/Jan/21 $${I}\left({a}\right)=\int_{\mathrm{0}}…
Question Number 130478 by liberty last updated on 26/Jan/21 $$\:{Integrate}\:{the}\:{function}\:{f}\left({x},{y}\right)={xy}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$$${over}\:{the}\:{domain}\:{R}=\left\{−\mathrm{3}\leqslant{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \leqslant\mathrm{3},\:\mathrm{1}\leqslant{y}\leqslant\mathrm{4}\:\right\} \\ $$ Answered by EDWIN88 last updated on 26/Jan/21…
Question Number 130474 by EDWIN88 last updated on 26/Jan/21 $$\mathcal{E}\:=\:\int_{\:\mathrm{0}} ^{\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \:\frac{\mathrm{dy}}{\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)^{\mathrm{5}/\mathrm{2}} }\: \\ $$ Answered by liberty last updated on 26/Jan/21 Terms of…
Question Number 130463 by Aboafya19 last updated on 25/Jan/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 130448 by physicstutes last updated on 25/Jan/21 $$\mathrm{Given}\:\mathrm{that}\:{f}\left({x}\right)\:=\:{f}\left(\pi−{x}\right),\:\mathrm{prove}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\pi} {xf}\left({x}\right){dx}\:=\:\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} {f}\left({x}\right){dx}. \\ $$$$\mathrm{please}\:\mathrm{what}\:\mathrm{are}\:\mathrm{different}\:\mathrm{methods}\:\mathrm{to}\:\mathrm{approach}\:\mathrm{this}\:\mathrm{question}? \\ $$ Answered by TheSupreme last updated on 25/Jan/21…
Question Number 64905 by ankan0 last updated on 23/Jul/19 $$\int\mathrm{log}\:\left(\mathrm{tan}\:\mathrm{x}\right)\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 64904 by mathmax by abdo last updated on 23/Jul/19 $${calculate}\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\int_{\mathrm{0}} ^{{x}} \:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dydx}\: \\ $$ Commented by ~ À…
Question Number 130432 by mnjuly1970 last updated on 25/Jan/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:{calculus}… \\ $$$$\:\:\:\:\:{calculate}\::: \\ $$$$\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} {xln}\left({x}\right){e}^{−{x}} {sin}\left({x}\right){dx}=? \\ $$$$\:\:\: \\ $$ Answered by Dwaipayan Shikari…
Question Number 130433 by mnjuly1970 last updated on 25/Jan/21 $$\:\:\:\:\:\:….{nice}\:\:\:{calculus}… \\ $$$$\:\:\:{prove}\:{that}:: \\ $$$$\:\:\:\Psi=\int_{\mathrm{0}} ^{\:\infty} {e}^{−{x}} {ln}\left({x}\right){cos}\left({x}\right){dx}\overset{?} {=}\frac{\mathrm{1}}{\mathrm{8}}\left(−\mathrm{4}\gamma−\pi−\mathrm{2}{ln}\left(\mathrm{2}\right)\right) \\ $$$$ \\ $$ Answered by Dwaipayan…