Question Number 160204 by amin96 last updated on 25/Nov/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{x}}}{\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{3}} }=? \\ $$ Commented by mr W last updated on 25/Nov/21 $${i}\:{think}\:\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 94662 by i jagooll last updated on 20/May/20 $$\int\:\sqrt{\mathrm{tan}\:\mathrm{x}+\mathrm{cot}\:\mathrm{x}}\:\mathrm{dx}\:=\:? \\ $$ Commented by i jagooll last updated on 20/May/20 $$\int\:\frac{\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}\:\mathrm{dx}}{\:\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}}\:.\sqrt{\mathrm{tan}\:\mathrm{x}}}\:=\: \\…
Question Number 160194 by amin96 last updated on 25/Nov/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{x}}}{\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{6}} }\boldsymbol{\mathrm{dx}}=? \\ $$ Commented by mr W last updated on 25/Nov/21 $$=\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 94649 by msup by abdo last updated on 20/May/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {lnx}\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 29105 by tawa tawa last updated on 04/Feb/18 $$\mathrm{Show}\:\mathrm{that}:\:\:\:\int_{−\mathrm{1}} ^{\:\:\:\mathrm{1}} \:\:\:\:\:\:\:\frac{\mathrm{dx}}{\mathrm{5}\:\mathrm{cosh}\left(\mathrm{x}\right)\:+\:\mathrm{13}\:\mathrm{sinh}\left(\mathrm{x}\right)}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{log}_{\mathrm{e}} \left(\frac{\mathrm{15e}\:−\:\mathrm{10}}{\mathrm{3e}\:+\:\mathrm{2}}\right)\: \\ $$ Commented by abdo imad last updated on 04/Feb/18 $${I}=\:\int_{−\mathrm{1}}…
Question Number 94625 by i jagooll last updated on 20/May/20 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{ln}\:\left(\Gamma\left({x}\right)\:{dx}\:=?\right. \\ $$$${note}\:\Gamma\left({x}\right)\::\mathrm{Gamma}\:\mathrm{function} \\ $$ Commented by turbo msup by abdo last updated…
Question Number 29079 by abdo imad last updated on 04/Feb/18 $${let}\:{give}\:{w}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{arcsin}\left({x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:{find}\:{w}\left({x}\right). \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 29077 by abdo imad last updated on 04/Feb/18 $${let}\:{give}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:{find}\:{a}\:{simple} \\ $$$${form}\:{of}\:\:{g}^{'} \left({x}\right)\:{without}\:{integral}. \\ $$ Commented by abdo imad last…
Question Number 29078 by abdo imad last updated on 04/Feb/18 $${let}\:{give}\:\:{h}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left({xt}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }\:\:{find}\:{h}\left({x}\right)\:. \\ $$ Commented by abdo imad last updated on 10/Feb/18 $${e}\:{have}\:{h}^{'}…
Question Number 29076 by abdo imad last updated on 04/Feb/18 $${let}\:{give}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left({x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:{find}\:{asimple} \\ $$$${form}\:{of}\:{f}\left({x}\right)\:{without}\:{integral}. \\ $$ Commented by abdo imad last updated…