Menu Close

Category: Integration

x-2-1-x-1-2x-3-dx-

Question Number 94609 by  M±th+et+s last updated on 20/May/20 $$\int\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\:\sqrt{{x}+\mathrm{1}}+\sqrt{\mathrm{2}{x}+\mathrm{3}}}{dx} \\ $$ Answered by mathmax by abdo last updated on 20/May/20 $$\mathrm{I}\:=\int\:\:\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}{\:\sqrt{\mathrm{x}+\mathrm{1}}+\sqrt{\mathrm{2x}+\mathrm{3}}}\mathrm{dx}\:\Rightarrow\mathrm{I}\:=\int\:\frac{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)\left(\sqrt{\mathrm{2x}+\mathrm{3}}−\sqrt{\mathrm{x}+\mathrm{1}}\right)}{\mathrm{x}+\mathrm{2}}\mathrm{dx}…

tan-1-sinx-1-sinx-dx-

Question Number 29043 by yesaditya22@gmail.com last updated on 03/Feb/18 $$\int\mathrm{tan}^{−} \left(\mathrm{1}−\mathrm{sinx}/\mathrm{1}+\mathrm{sinx}\right)\:\mathrm{dx} \\ $$ Commented by abdo imad last updated on 03/Feb/18 $${let}\:{put}\:{I}=\:\int\:{arctan}\left(\frac{\mathrm{1}−{sinx}}{\mathrm{1}+{sinx}}\right){dx}\:\:\:\left({arctan}={tan}^{−\mathrm{1}} \right){we}\:{have} \\ $$$$\frac{\mathrm{1}−{sinx}}{\mathrm{1}+{sinx}}=\frac{\mathrm{1}\:−{cos}\left(\frac{\pi}{\mathrm{2}}−{x}\right)}{\mathrm{1}+{cos}\left(\frac{\pi}{\mathrm{2}}−{x}\right)}=\frac{\mathrm{2}{sin}^{\mathrm{2}}…

find-D-e-y-sin-2xy-dxdy-with-D-0-1-0-then-find-the-value-of-0-sin-2-t-t-e-t-dt-

Question Number 29027 by abdo imad last updated on 03/Feb/18 $${find}\:\int\int_{{D}} \:{e}^{−{y}} {sin}\left(\mathrm{2}{xy}\right){dxdy}\:{with}\:{D}=\left[\mathrm{0},\mathrm{1}\right]×\left[\mathrm{0},+\infty\left[\right.\right. \\ $$$${then}\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}^{\mathrm{2}} {t}}{{t}}\:{e}^{−{t}} {dt}\:\:. \\ $$ Terms of Service Privacy…

for-t-gt-0-and-f-t-4pit-n-2-e-x-2-4t-prove-that-R-f-t-x-dx-1-t-gt-0-

Question Number 29028 by abdo imad last updated on 03/Feb/18 $${for}\:{t}>\mathrm{0}\:\:{and}\:{f}\left({t}\right)=\:\left(\mathrm{4}\pi{t}\right)^{−\frac{{n}}{\mathrm{2}}} \:\:{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}{t}}} \:\:\:{prove}\:{that} \\ $$$$\int_{{R}} {f}_{{t}} \left({x}\right){dx}=\mathrm{1}\:\:\:\forall{t}>\mathrm{0}. \\ $$ Terms of Service Privacy Policy…

1-Show-that-the-function-f-x-x-is-of-Riemann-for-all-segments-of-R-2-Show-that-the-function-f-x-defined-within-x-0-1-f-x-1-if-x-Q-0-1-0-otherwise-is-not-of-Riemann-on-x-0-1-

Question Number 94544 by Ar Brandon last updated on 19/May/20 $$\mathrm{1}\backslash\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\left[\mathrm{x}\right]\:\mathrm{is}\:\mathrm{of}\:\mathrm{Riemann} \\ $$$$\mathrm{for}\:\mathrm{all}\:\mathrm{segments}\:\mathrm{of}\:\mathbb{R} \\ $$$$\mathrm{2}\backslash\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{defined}\:\mathrm{within}\:\mathrm{x}\in\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{1}\:\mathrm{if}\:\mathrm{x}\in\mathbb{Q}\cap\left[\mathrm{0},\mathrm{1}\right]}\\{\mathrm{0}\:\:\mathrm{otherwise}}\end{cases}\:\:\mathrm{is}\:\mathrm{not}\:\mathrm{of}\:\mathrm{Riemann}\:\mathrm{on}\:\mathrm{x}\in\left[\mathrm{0},\mathrm{1}\right] \\ $$ Terms of Service Privacy Policy Contact:…