Menu Close

Category: Integration

let-give-x-0-t-x-1-e-t-dt-with-x-gt-0-prove-that-lim-n-gt-0-n-1-t-n-n-t-x-1-dt-x-

Question Number 26566 by abdo imad last updated on 26/Dec/17 $${let}\:{give}\:\Gamma\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt}\:{with}\:{x}>\mathrm{0}\:{prove}\:{that} \\ $$$$\:{lim}\:_{{n}−>\propto} \int_{\mathrm{0}} ^{{n}} \:\left(\mathrm{1}−\frac{{t}}{{n}}\right)^{{n}} {t}^{{x}−\mathrm{1}} {dt}\:\:=\:\Gamma\left({x}\right) \\ $$ Commented…

let-give-x-0-t-x-1-e-t-dt-and-x-gt-0-gamma-euler-function-prove-that-x-lim-n-gt-n-n-x-n-n-1-n-2-n-x-

Question Number 26564 by abdo imad last updated on 26/Dec/17 $${let}\:{give}\:\Gamma\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt}\:\:\:{and}\:\:\:{x}>\mathrm{0}\left({gamma}\:{euler}\:{function}\right) \\ $$$${prove}\:{that}\:\:\Gamma\left({x}\right)\:\:={lim}_{{n}−>\propto} \:\frac{\left({n}!\right)\:{n}^{{x}} }{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)…\left({n}+{x}\right)} \\ $$ Terms of Service Privacy…

let-put-F-x-0-e-tx-sint-t-dt-with-x-0-we-accept-that-F-is-class-C-1-on-0-calculate-F-x-and-find-F-x-then-find-the-value-of-0-sint-t-dt-

Question Number 26559 by abdo imad last updated on 26/Dec/17 $${let}\:{put}\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{tx}} \:\frac{{sint}}{{t}}\:{dt}\:\:\:{with}\:\:{x}\geqslant\mathrm{0} \\ $$$${we}\:{accept}\:{that}\:{F}\:{is}\:{class}\:{C}^{\mathrm{1}} \:{on}\:\left[\mathrm{0},\propto\left[\right.\right. \\ $$$${calculate}\:\:\frac{\partial{F}}{\partial{x}}\:\:{and}\:{find}\:{F}\left({x}\right) \\ $$$${then}\:\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sint}}{{t}}\:{dt} \\ $$…

let-f-0-1-x-x-2-x-dx-with-gt-1-4-1-explicit-f-2-calculate-g-0-1-xdx-x-2-x-3-find-the-value-of-intehrals-0-1-x-x-2-x-2-dx-snd-0-1-xdx-

Question Number 92082 by mathmax by abdo last updated on 04/May/20 $${let}\:{f}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {x}\sqrt{{x}^{\mathrm{2}} −{x}+\alpha}{dx}\:\:\:\:\:\:{with}\:\alpha>\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left.\mathrm{1}\right)\:{explicit}\:\:{f}\left(\alpha\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{xdx}}{\:\sqrt{{x}^{\mathrm{2}} −{x}+\alpha}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:{intehrals}\:\int_{\mathrm{0}} ^{\mathrm{1}}…