Question Number 28992 by abdo imad last updated on 02/Feb/18 $${L}\:{means}\:{laplace}\:{transform}\:{find}\:\:{L}\left({e}^{{at}} \right)\left({s}\right). \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 28993 by abdo imad last updated on 02/Feb/18 $${L}\:{means}\:{laplacr}\:{trsnsform}\:{find}\:{L}\:\left({sin}\left({at}\right)\right) \\ $$$${and}\:{L}\left({cos}\left({at}\right)\right). \\ $$ Answered by sma3l2996 last updated on 03/Feb/18 $${L}\left({sin}\left({at}\right)\right)=\int_{\mathrm{0}} ^{\infty} {sin}\left({at}\right){e}^{−{st}}…
Question Number 28990 by abdo imad last updated on 02/Feb/18 $${calculate}\:\int_{\gamma} \:\:\:\frac{{e}^{{z}} }{\left({z}−\mathrm{1}\right)\left({z}+\mathrm{3}\right)^{\mathrm{2}} }{dz}\:{with}\:\gamma\:{id}\:{the}\:{positif} \\ $$$${circle}\:\gamma=\left\{{z}\in{C}/\:\mid{z}\mid=\frac{\mathrm{3}}{\mathrm{2}}\right\}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 28988 by abdo imad last updated on 02/Feb/18 $${let}\:{give}\:\mathrm{0}<\alpha<\mathrm{1}\:{find}\:{in}\:{terms}\:{of}\:\alpha\:{the}\:{value}\:{of}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{{x}^{\alpha} \left(\mathrm{1}+{x}\right)}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 28989 by abdo imad last updated on 02/Feb/18 $${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}^{\mathrm{2}} \left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} }{dx}. \\ $$ Commented by abdo imad last updated on 04/Feb/18…
Question Number 94520 by john santu last updated on 19/May/20 $$\int\:\sqrt{{e}^{\mathrm{4}{x}} +\mathrm{1}}\:{dx}\: \\ $$ Answered by niroj last updated on 19/May/20 $$\:\:\int\sqrt{\left(\mathrm{e}^{\mathrm{x}} \right)^{\mathrm{4}} +\mathrm{1}}\:\:\mathrm{dx}\:\: \\…
Question Number 28986 by abdo imad last updated on 02/Feb/18 $${let}\:{give}\:{a}>\mathrm{1}\:\:{find}\:\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{dt}}{{a}+{cost}}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 28985 by abdo imad last updated on 02/Feb/18 $${let}\:{give}\:{I}_{{m},{a}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left({mx}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}{dx} \\ $$$$\left.\mathrm{1}\right){verify}\:{that}\:{I}_{{m},\mathrm{1}} ={lim}_{{a}\rightarrow\mathrm{1}} \:{I}_{{m},{a}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{sin}\left({mx}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}}…
Question Number 28983 by abdo imad last updated on 02/Feb/18 $${find}\:{the}\:{value}\:{of}\int_{−\infty} ^{+\infty} \:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\:\frac{{sinx}}{{x}}{dx}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 28984 by abdo imad last updated on 02/Feb/18 $${find}\:{F}\left(\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{4}} }\right)\:{F}\:{means}\:{fourier}\:{transform}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com