Menu Close

Category: Integration

let-give-D-x-y-R-2-x-2-x-y-2-4-and-0-y-1-calculate-D-ln-xy-x-2-y-2-dxdy-

Question Number 26758 by abdo imad last updated on 28/Dec/17 $${let}\:{give}\:{D}=\left\{\left(\:\:{x},{y}\:\right)\in\mathbb{R}^{\mathrm{2}} /{x}^{\mathrm{2}} −{x}\:+{y}^{\mathrm{2}} \leqslant\:\mathrm{4}\:{and}\:\:\mathrm{0}\leqslant{y}\leqslant\mathrm{1}\right\} \\ $$$${calculate}\:\int\int_{{D}} {ln}\left({xy}\right)\sqrt{\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} {dxdy}\:\:} \\ $$ Commented by abdo imad…

prove-that-0-1-dx-x-e-x-n-0-1-n-n-1-n-1-A-n-with-A-n-0-n-1-t-n-e-t-dt-

Question Number 26756 by abdo imad last updated on 28/Dec/17 $${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{{x}+\:{e}^{{x}} }\:=\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:{A}_{{n}} \\ $$$${with}\:\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{{n}+\mathrm{1}} \:{t}^{{n}} \:{e}^{−{t}} {dt}\:.…

give-the-decomposition-of-F-x-1-x-2n-1-inside-C-x-then-find-the-value-of-0-dx-1-x-2n-n-N-and-n-o-

Question Number 26757 by abdo imad last updated on 28/Dec/17 $${give}\:{the}\:{decomposition}\:{of}\:{F}\left({x}\right)\:=\:\:\:\frac{\mathrm{1}}{{x}^{\mathrm{2}{n}} +\mathrm{1}}\:\:{inside}\:\mathbb{C}\left[{x}\right] \\ $$$${then}\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}{n}} }\:\:\:\:\:\:{n}\in\mathbb{N}\:\:{and}\:{n}\neq{o} \\ $$ Commented by abdo imad last updated…

Question-157826

Question Number 157826 by cortano last updated on 28/Oct/21 Answered by MJS_new last updated on 29/Oct/21 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{dx}}{\left(\mathrm{2}+\mathrm{5}{x}\right)\sqrt[{\mathrm{4}}]{\mathrm{2}{x}^{\mathrm{3}} \left(\mathrm{1}−{x}\right)}}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt[{\mathrm{4}}]{\frac{\mathrm{7}{x}}{\mathrm{2}\left(\mathrm{1}−{x}\right)}}\:\rightarrow\:{dx}=\mathrm{4}\sqrt[{\mathrm{4}}]{\frac{\mathrm{2}{x}^{\mathrm{3}} \left(\mathrm{1}−{x}\right)^{\mathrm{5}} }{\mathrm{7}}}{dt}\right] \\…

Question-26738

Question Number 26738 by goswamisubhabrata007@gmail.com last updated on 28/Dec/17 Commented by prakash jain last updated on 28/Dec/17 $$\int{e}^{{x}} \left(\mathrm{log}\:{x}+\frac{\mathrm{1}}{{x}}\right){dx} \\ $$$$\int{e}^{{x}} \left[{f}\left({x}\right)+{f}'\left({x}\right)\right]{dx} \\ $$$$=\int{e}^{{x}} {f}\left({x}\right){dx}+\int{e}^{{x}}…