Menu Close

Category: Integration

5-3-2x-dx-

Question Number 157456 by tounghoungko last updated on 23/Oct/21 $$\:\int\:\mathrm{5}^{\mathrm{3}−\mathrm{2}{x}} \:{dx}\:=? \\ $$ Answered by FelipeLz last updated on 24/Oct/21 $$\int\mathrm{5}^{\mathrm{3}−\mathrm{2}{x}} {dx}\:=\:\mathrm{5}^{\mathrm{3}} \int\mathrm{5}^{−\mathrm{2}{x}} {dx} \\…

Question-157455

Question Number 157455 by aliibrahim1 last updated on 23/Oct/21 Answered by FongXD last updated on 23/Oct/21 $$\mathrm{let}\:\mathrm{u}=\mathrm{x}^{\mathrm{2021}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2021}} +._{._{._{.} } } }=\mathrm{x}^{\mathrm{2021}} +\frac{\mathrm{1}}{\mathrm{u}} \\ $$$$\Leftrightarrow\:\mathrm{u}^{\mathrm{2}}…

hi-every-one-here-i-will-put-my-solution-for-old-question-by-mr-MJS-x-1-x-x-1-3x-2-4-dx-the-solution-by-using-Appell-hypergeometric-function-

Question Number 91914 by  M±th+et+s last updated on 03/May/20 $${hi}\:{every}\:{one}\:{here}\:{i}\:{will}\:{put}\:{my}\:{solution}\:\: \\ $$$${for}\:{old}\:{question}\:{by}\:{mr}.{MJS} \\ $$$$\int\frac{\sqrt{\left({x}−\mathrm{1}\right){x}\left({x}+\mathrm{1}\right)}}{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}}{dx} \\ $$$$ \\ $$$${the}\:{solution}\:{by}\:{using}\:\:\: \\ $$$${Appell}\:{hypergeometric}\:{function} \\ $$ Answered by…

ln-1-sin-2-x-sin-2-x-dx-

Question Number 91910 by Ar Brandon last updated on 03/May/20 $$\int\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \mathrm{x}\right)}{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx} \\ $$ Commented by mathmax by abdo last updated on 03/May/20 $${let}\:{f}\left({a}\right)\:=\int\frac{{ln}\left(\mathrm{1}+{asin}^{\mathrm{2}}…

dx-x-x-2-2x-2-

Question Number 157442 by bobhans last updated on 23/Oct/21 $$\:\:\int\:\frac{\mathrm{dx}}{\mathrm{x}−\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{2}}}\: \\ $$ Answered by MJS_new last updated on 23/Oct/21 $$\int\frac{{dx}}{{x}−\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}}}= \\ $$$$\:\:\:\:\:\left[{t}={x}+\mathrm{1}+\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}}\:\rightarrow\:{dx}=\frac{\sqrt{{x}^{\mathrm{2}}…