Question Number 92120 by M±th+et+s last updated on 04/May/20 $$\int_{−\mathrm{3}} ^{\mathrm{4}} \lfloor{x}.\lceil{x}^{\mathrm{2}} \rceil\rfloor\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 26584 by gunawan last updated on 27/Dec/17 $$\int_{{a}} ^{{x}} \left({x}−{t}\right)^{\mathrm{5}} {y}\left({t}\right){dt}=\mathrm{4}{x}^{\mathrm{6}} \\ $$$${y}\left({x}\right)=… \\ $$ Commented by prakash jain last updated on 27/Dec/17…
Question Number 92119 by M±th+et+s last updated on 04/May/20 $${show}\:{that}\: \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{\lfloor{x}\rfloor^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}\:{dy}}{\mathrm{1}−{xy}} \\ $$ Commented by mathmax by…
Question Number 157655 by tounghoungko last updated on 26/Oct/21 $$\:\:{x}^{\mathrm{2}} \:{f}\left({x}^{\mathrm{3}} \right)+\frac{\mathrm{1}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }\:{f}\left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\right)=\mathrm{4}{x}^{\mathrm{3}} \left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\mathrm{5}} \\ $$$$\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} {f}\left({x}\right)\:{dx}\:=? \\ $$ Commented by cortano last…
Question Number 26575 by abdo imad last updated on 26/Dec/17 $${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]} {sinxdx}\:\:\:{in}\:{that}\:\left[{x}\right]={E}\left({x}\right) \\ $$ Commented by abdo imad last updated on 29/Dec/17 $${let}\:{put}\:{I}=\:\int_{\mathrm{0}}…
Question Number 26569 by abdo imad last updated on 26/Dec/17 $${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}\:} {x}\:{E}\left(\frac{\mathrm{1}}{{x}}\right){dx}\: \\ $$ Commented by abdo imad last updated on 30/Dec/17 $${let}\:{put}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 26570 by abdo imad last updated on 26/Dec/17 $${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} {e}^{−{px}} /{sinx}/{dx}\:\:\:{with}\:{p}>\mathrm{0} \\ $$ Commented by abdo imad last updated on 02/Jan/18 $${let}\:{put}\:{I}=\:\int_{\mathrm{0}}…
Question Number 26566 by abdo imad last updated on 26/Dec/17 $${let}\:{give}\:\Gamma\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt}\:{with}\:{x}>\mathrm{0}\:{prove}\:{that} \\ $$$$\:{lim}\:_{{n}−>\propto} \int_{\mathrm{0}} ^{{n}} \:\left(\mathrm{1}−\frac{{t}}{{n}}\right)^{{n}} {t}^{{x}−\mathrm{1}} {dt}\:\:=\:\Gamma\left({x}\right) \\ $$ Commented…
Question Number 26563 by abdo imad last updated on 26/Dec/17 $${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−{cosx}}{{x}^{\mathrm{2}} }\:{dx} \\ $$ Commented by abdo imad last updated on 28/Dec/17 $${let}\:{put}\:{I}=\:\int_{\mathrm{0}}…
let-give-x-0-t-x-1-e-t-dt-and-x-gt-0-gamma-euler-function-prove-that-x-lim-n-gt-n-n-x-n-n-1-n-2-n-x-
Question Number 26564 by abdo imad last updated on 26/Dec/17 $${let}\:{give}\:\Gamma\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt}\:\:\:{and}\:\:\:{x}>\mathrm{0}\left({gamma}\:{euler}\:{function}\right) \\ $$$${prove}\:{that}\:\:\Gamma\left({x}\right)\:\:={lim}_{{n}−>\propto} \:\frac{\left({n}!\right)\:{n}^{{x}} }{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)…\left({n}+{x}\right)} \\ $$ Terms of Service Privacy…