Question Number 26242 by abdo imad last updated on 22/Dec/17 $${prove}\:{that}\:\:\sum_{{k}=\mathrm{0}} ^{{k}={n}} \:\:{cos}^{\mathrm{2}} \left({kx}\right)=\:\frac{{n}+\mathrm{1}}{\mathrm{2}}\:\:+\:\frac{{sin}\left(\left({n}+\mathrm{1}\right){x}\right){cos}\left({nx}\right)}{\mathrm{2}\:{sinx}} \\ $$$${x}\:{from}\:{R}−\left\{\:{k}\pi.{k}\varepsilon{Z}\right\}{then}\:{find}\:{the}\:{value}\:{of}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sin}\left(\left({n}+\mathrm{1}\right){x}\right){cos}\left({nx}\right)}{{sinx}}{dx} \\ $$$$ \\ $$ Commented…
Question Number 26241 by Absa raj last updated on 23/Dec/17 $$\int\sqrt{\mathrm{sin}\:\theta}{d}\theta \\ $$$${integration}\:?? \\ $$$${solve}\:{quickly} \\ $$ Commented by prakash jain last updated on 24/Dec/17…
Question Number 157309 by cortano last updated on 22/Oct/21 $$\:\:\int\:\frac{{dx}}{\:\sqrt{{x}}+{x}\sqrt{{x}+\mathrm{1}}}\:=? \\ $$ Answered by MJS_new last updated on 22/Oct/21 $$\int\frac{{dx}}{\:\sqrt{{x}}+{x}\sqrt{{x}+\mathrm{1}}}= \\ $$$$=\int\frac{\sqrt{{x}+\mathrm{1}}}{{x}^{\mathrm{2}} +{x}−\mathrm{1}}{dx}−\int\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}−\mathrm{1}\right)\sqrt{{x}}} \\…
Question Number 91774 by frc2crc last updated on 03/May/20 $$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}\:^{{k}} \left({x}\right)}{{x}^{{k}} }{dx}\:{for}\:{any}\:{k}>\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 91771 by M±th+et+s last updated on 03/May/20 $$\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{3}} \left({x}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$ Commented by abdomathmax last updated on 03/May/20 $${let}\:{I}=\int_{\mathrm{0}} ^{\infty}…
Question Number 91753 by Rio Michael last updated on 02/May/20 $$\int\mathrm{3}\:\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} \:{dx}\:=\:?? \\ $$ Commented by peter frank last updated on 02/May/20 $${by}\:{part} \\ $$…
Question Number 157268 by gsk2684 last updated on 21/Oct/21 $${prove}\:{that} \\ $$$$\int\frac{{x}^{\mathrm{2}} }{\left({x}\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx}=−\frac{{x}\mathrm{sec}\:{x}}{{x}\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}+\mathrm{tan}\:{x}+{c} \\ $$ Answered by Ar Brandon last updated on 18/Nov/21 $${I}=\int\frac{{x}^{\mathrm{2}}…
Question Number 91735 by frc2crc last updated on 02/May/20 $$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \sqrt[{{k}}]{\mathrm{tan}^{{m}} \:\alpha}\:{d}\alpha\:{for}\:{m}>\mathrm{1} \\ $$ Commented by mathmax by abdo last updated on 03/May/20 $${I}\:=\int_{\mathrm{0}}…
Question Number 157257 by john_santu last updated on 21/Oct/21 $$\int\:\frac{\mathrm{sin}\:^{\mathrm{6}} {x}+\mathrm{cos}\:^{\mathrm{5}} {x}}{\mathrm{sin}\:^{\mathrm{2}} {x}\:\mathrm{cos}\:^{\mathrm{2}} {x}}\:{dx} \\ $$ Answered by qaz last updated on 21/Oct/21 $$\int\frac{\mathrm{sin}\:^{\mathrm{6}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{5}}…
Question Number 91714 by jagoll last updated on 02/May/20 Commented by Tony Lin last updated on 02/May/20 $$\int_{\mathrm{0}} ^{\mathrm{2}} \left({ln}\mathrm{3}^{\frac{\mathrm{2}\pi}{\mathrm{3}}} \right){e}^{{x}^{\mathrm{2}} } {dx} \\ $$$$=\left({ln}\mathrm{3}^{\frac{\mathrm{2}\pi}{\mathrm{3}}}…