Menu Close

Category: Integration

prove-that-k-0-k-n-cos-2-kx-n-1-2-sin-n-1-x-cos-nx-2-sinx-x-from-R-kpi-k-Z-then-find-the-value-of-integral-0-pi-sin-n-1-x-cos-nx-sinx-dx-

Question Number 26242 by abdo imad last updated on 22/Dec/17 $${prove}\:{that}\:\:\sum_{{k}=\mathrm{0}} ^{{k}={n}} \:\:{cos}^{\mathrm{2}} \left({kx}\right)=\:\frac{{n}+\mathrm{1}}{\mathrm{2}}\:\:+\:\frac{{sin}\left(\left({n}+\mathrm{1}\right){x}\right){cos}\left({nx}\right)}{\mathrm{2}\:{sinx}} \\ $$$${x}\:{from}\:{R}−\left\{\:{k}\pi.{k}\varepsilon{Z}\right\}{then}\:{find}\:{the}\:{value}\:{of}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sin}\left(\left({n}+\mathrm{1}\right){x}\right){cos}\left({nx}\right)}{{sinx}}{dx} \\ $$$$ \\ $$ Commented…

dx-x-x-x-1-

Question Number 157309 by cortano last updated on 22/Oct/21 $$\:\:\int\:\frac{{dx}}{\:\sqrt{{x}}+{x}\sqrt{{x}+\mathrm{1}}}\:=? \\ $$ Answered by MJS_new last updated on 22/Oct/21 $$\int\frac{{dx}}{\:\sqrt{{x}}+{x}\sqrt{{x}+\mathrm{1}}}= \\ $$$$=\int\frac{\sqrt{{x}+\mathrm{1}}}{{x}^{\mathrm{2}} +{x}−\mathrm{1}}{dx}−\int\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}−\mathrm{1}\right)\sqrt{{x}}} \\…

Question-91714

Question Number 91714 by jagoll last updated on 02/May/20 Commented by Tony Lin last updated on 02/May/20 $$\int_{\mathrm{0}} ^{\mathrm{2}} \left({ln}\mathrm{3}^{\frac{\mathrm{2}\pi}{\mathrm{3}}} \right){e}^{{x}^{\mathrm{2}} } {dx} \\ $$$$=\left({ln}\mathrm{3}^{\frac{\mathrm{2}\pi}{\mathrm{3}}}…