Menu Close

Category: Integration

0-1-x-x-1-x-1-x-sin-pix-dx-

Question Number 157138 by amin96 last updated on 20/Oct/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}} \left(\mathrm{1}−\boldsymbol{\mathrm{x}}\right)^{\mathrm{1}−\boldsymbol{\mathrm{x}}} \boldsymbol{\mathrm{sin}}\left(\pi\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}}=? \\ $$ Commented by mindispower last updated on 20/Oct/21 $${hello}\:{source}\:{are}\:{you}\:{sir}\:{close}\:{form}\:{exist}\:? \\…

if-1-cos-x-1-a-0-2-n-1-n-a-n-cos-nx-find-a-0-and-a-n-you-can-use-fourier-series-

Question Number 26054 by abdo imad last updated on 18/Dec/17 $$\left.{if}\:\:\left(\mathrm{1}+{cos}\left({x}\right)\right)^{−\mathrm{1}} \:=\:{a}_{\mathrm{0}} /_{\mathrm{2}} \:\:+\sum_{{n}=\mathrm{1}} ^{{n}=\propto} \:{a}_{{n}} \:{cos}\left({nx}\right)\right) \\ $$$${find}\:{a}_{\mathrm{0}} \:{and}\:\:{a}_{{n}} …{you}\:{can}\:{use}\:{fourier} \\ $$$${series}. \\ $$$$…

0-pi-2-xsin-x-ln-sin-x-dx-

Question Number 157096 by amin96 last updated on 19/Oct/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \boldsymbol{\mathrm{xsin}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{x}}\right)\right)\boldsymbol{\mathrm{dx}}=? \\ $$ Answered by mindispower last updated on 19/Oct/21 $$\left.\left(−{xcos}\left({x}\right)+{sin}\left({x}\right)\right){ln}\left({sin}\left({x}\right)\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} +\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}}…

e-give-a-element-from-0-find-the-value-of-0-cos-ax-2-and-0-sin-ax-2-dx-

Question Number 26024 by abdo imad last updated on 17/Dec/17 $$\left.{e}\:{give}\:{a}\:{element}\:{from}\right]\mathrm{0}.\propto\left[\:\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left(\:{ax}^{\mathrm{2}} \right)\right. \\ $$$${and}\:\:\int_{\mathrm{0}} ^{\infty} \:{sin}\left(\:{ax}^{\mathrm{2}} \right){dx}. \\ $$ Terms of Service Privacy…

answer-to-question25980-key-of-slution-we-develop-the-foction-f-x-sin-px-at-fourier-serie-f-2pi-periodic-f-x-n-1-n-a-n-sin-nx-and-a-n-2-T-T-sin-px-sin-nx-dx-T-2pi-a-n

Question Number 26023 by abdo imad last updated on 17/Dec/17 $${answer}\:{to}\:{question}\mathrm{25980}\:{key}\:{of}\:{slution}\:{we}\:{develop}\:\:{the} \\ $$$${foction}\:{f}\left({x}\right)\:=\:{sin}\left({px}\right)\:{at}\:{fourier}\:{serie}\left(\left({f}\:\mathrm{2}\pi\:{periodic}\right)\right. \\ $$$${f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{{n}=\propto} \:{a}_{{n}} {sin}\left({nx}\right)\:{and}\:\:{a}_{{n}} =\:\mathrm{2}/{T}\:\int_{\left[{T}\right]} {sin}\left({px}\right){sin}\left({nx}\right){dx}\:\:\:\left({T}=\mathrm{2}\pi\right) \\ $$$$ \\ $$$$ \\…