Menu Close

Category: Integration

Question-25868

Question Number 25868 by ajfour last updated on 16/Dec/17 Commented by ajfour last updated on 16/Dec/17 $${Find}\:{the}\:{area}\:{enclosed}\:{by}\:{a} \\ $$$${variable}\:{line}\:\frac{{x}}{{t}}+\frac{{y}}{{l}−{t}}=\mathrm{1}\:{and} \\ $$$${the}\:{coordinate}\:{axes}\:{in}\:{the} \\ $$$${first}\:{quadrant};\: \\ $$$$\left({the}\:{line}\:{shifts}\:{as}\:{t}\:{changes}\right.…

2-2x-x-1-x-2-1-dx-

Question Number 25865 by anonymous_ last updated on 15/Dec/17 $$\int\frac{\mathrm{2}+\mathrm{2}{x}}{\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{dx} \\ $$ Answered by ajfour last updated on 16/Dec/17 $$\frac{\mathrm{2}+\mathrm{2}{x}}{\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)}=\frac{{A}}{{x}−\mathrm{1}}+\frac{{Bx}+{C}}{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\Rightarrow\mathrm{2}+\mathrm{2}{x}={A}\left({x}^{\mathrm{2}}…

find-the-value-of-integral-R-z-a-1-dz-with-a-from-C-aplly-this-result-to-find-the-value-of-0-2-x-4-1-dx-

Question Number 25851 by abdo imad last updated on 15/Dec/17 $${find}\:{the}\:{value}\:{of}\:{integral}\:\:\:\int_{{R}} \left({z}−{a}\right)^{−\mathrm{1}} {dz}\:\:{with}\:{a}\:{from}\:{C}\:\:{aplly} \\ $$$${this}\:{result}\:{to}\:{find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\infty} \left(\mathrm{2}\:+{x}^{\mathrm{4}_{} } \right)^{−\mathrm{1}} {dx}. \\ $$ Commented by abdo…

Question-156914

Question Number 156914 by cortano last updated on 17/Oct/21 Answered by puissant last updated on 17/Oct/21 $${D}=\int\frac{{arcsin}\left(\frac{\mathrm{1}}{{x}}\right)}{{x}^{\mathrm{5}} }{dx}\:;\:{u}=\frac{\mathrm{1}}{{x}}\:\rightarrow\:{du}=−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }{dx} \\ $$$$\Rightarrow\:{D}=−\int\:\frac{{u}^{\mathrm{5}} {arcsin}\left({u}\right)}{{u}^{\mathrm{2}} }{du}=−\int{u}^{\mathrm{3}} {arcsin}\left({u}\right){du} \\…

Question-156915

Question Number 156915 by mnjuly1970 last updated on 17/Oct/21 Answered by qaz last updated on 07/Nov/21 $$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{dx}}{\left(\pi^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} \right)\mathrm{cosh}\:\mathrm{x}} \\ $$$$=\int_{−\infty} ^{+\infty} \frac{\mathrm{e}^{\mathrm{x}}…

x-n-lnx-dx-

Question Number 25837 by mubeen897@hotmail.com last updated on 15/Dec/17 $$\int\left({x}^{{n}} {lnx}\right){dx} \\ $$ Answered by kaivan.ahmadi last updated on 15/Dec/17 $$\mathrm{u}=\mathrm{lnx}\Rightarrow\mathrm{du}=\frac{\mathrm{dx}}{\mathrm{x}} \\ $$$$\mathrm{dv}=\mathrm{x}^{\mathrm{n}} \mathrm{dx}\Rightarrow\mathrm{v}=\frac{\mathrm{x}^{\mathrm{n}+\mathrm{1}} }{\mathrm{n}+\mathrm{1}}…

answer-to-q25796-f-ind-the-value-off-x-0-pi-ln-1-xcos-d-with-0-lt-x-lt-1-f-x-0-pi-cos-1-xcos-1-d-pix-1-x-1-0-pi-1-xcos-1-d-and-by-the-changeent-tan-u-then-the

Question Number 25821 by abdo imad last updated on 15/Dec/17 $${answer}\:{to}\:{q}\mathrm{25796}\:{f}_{} {ind}\:{the}\:{value}\:{off}\left({x}\right)=\:\int_{\mathrm{0}^{} } ^{\pi_{} } {ln}\left(\mathrm{1}+{xcos}\theta\right){d}\theta\:{with}\:\mathrm{0}<{x}<\mathrm{1}\:\:\:\partial{f}/\partial{x}=\:\int_{\mathrm{0}} ^{\pi} \:\:{cos}\theta\left(\mathrm{1}+{xcos}\theta\right)^{−\mathrm{1}} {d}\theta=\pi{x}^{−\mathrm{1}} −{x}^{−\mathrm{1}} \int_{\mathrm{0}} ^{\pi} \left(\mathrm{1}+{xcos}\theta\right)^{−\mathrm{1}} {d}\theta{and}\:{by}\:{the}\:{changeent}\:{tan}\theta={u}\:{then}\:{the}\:{changement}\:{u}=\left(\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}\right)^{−\mathrm{1}^{} }…