Question Number 25837 by mubeen897@hotmail.com last updated on 15/Dec/17
Question Number 25824 by abdo imad last updated on 15/Dec/17
Question Number 25821 by abdo imad last updated on 15/Dec/17 $${answer}\:{to}\:{q}\mathrm{25796}\:{f}_{} {ind}\:{the}\:{value}\:{off}\left({x}\right)=\:\int_{\mathrm{0}^{} } ^{\pi_{} } {ln}\left(\mathrm{1}+{xcos}\theta\right){d}\theta\:{with}\:\mathrm{0}<{x}<\mathrm{1}\:\:\:\partial{f}/\partial{x}=\:\int_{\mathrm{0}} ^{\pi} \:\:{cos}\theta\left(\mathrm{1}+{xcos}\theta\right)^{−\mathrm{1}} {d}\theta=\pi{x}^{−\mathrm{1}} −{x}^{−\mathrm{1}} \int_{\mathrm{0}} ^{\pi} \left(\mathrm{1}+{xcos}\theta\right)^{−\mathrm{1}} {d}\theta{and}\:{by}\:{the}\:{changeent}\:{tan}\theta={u}\:{then}\:{the}\:{changement}\:{u}=\left(\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}\right)^{−\mathrm{1}^{} }…
Question Number 25811 by ajfour last updated on 15/Dec/17 Commented by ajfour last updated on 15/Dec/17
Question Number 25796 by abdo imad last updated on 15/Dec/17
Question Number 156869 by cortano last updated on 16/Oct/21 Answered by gsk2684 last updated on 16/Oct/21
Question Number 91326 by mhmd last updated on 29/Apr/20 Commented by mathmax by abdo last updated on 30/Apr/20 $${I}\:=\int\:\:\frac{{dx}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}\:\Rightarrow\:{I}\:=_{{x}−\mathrm{1}={t}} \:\:\:\:\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} \sqrt{\left({t}+\mathrm{1}\right)^{\mathrm{2}} −\left({t}+\mathrm{1}\right)+\mathrm{1}}} \…
Question Number 156860 by amin96 last updated on 16/Oct/21
Question Number 156849 by amin96 last updated on 16/Oct/21
Question Number 91310 by M±th+et+s last updated on 29/Apr/20