Question Number 24817 by A1B1C1D1 last updated on 26/Nov/17 Answered by mrW1 last updated on 26/Nov/17 $$=\int_{\mathrm{0}} ^{\:\mathrm{4}} \left[\frac{\mathrm{1}}{\mathrm{2}}\left({y}−\frac{{y}^{\mathrm{2}} }{\mathrm{16}}\right)+{y}\left(\sqrt{{y}}−\frac{{y}}{\mathrm{4}}\right)\right]{dy} \\ $$$$=\int_{\mathrm{0}} ^{\:\mathrm{4}} \left(\frac{{y}}{\mathrm{2}}−\frac{\mathrm{9}{y}^{\mathrm{2}} }{\mathrm{32}}+{y}^{\frac{\mathrm{3}}{\mathrm{2}}}…
Question Number 90357 by john santu last updated on 23/Apr/20 $$\int\:\frac{{x}.\mathrm{2}^{{x}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{dx}\:=\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 155883 by john_santu last updated on 05/Oct/21 $$\int\:\frac{\mathrm{tan}\:^{\mathrm{2}} {x}}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} {x}}\:{dx}=? \\ $$ Commented by aliyn last updated on 05/Oct/21 $$\boldsymbol{{I}}\:=\:\int\:\frac{\boldsymbol{{tan}}^{\mathrm{2}} \boldsymbol{{x}}}{\mathrm{1}\:−\:\boldsymbol{{tan}}^{\mathrm{2}} \boldsymbol{{x}}}\:\boldsymbol{{dx}} \\…
Question Number 155863 by talminator2856791 last updated on 05/Oct/21 $$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\mathrm{monster}\:\mathrm{integral}} \\ $$$$\: \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}^{\mathrm{2}} \left(\mathrm{sin}\left(\mathrm{2}{x}\right)+\:\mathrm{cos}\left(\mathrm{3}{x}\right)\right)\:{dx} \\ $$$$\: \\ $$$$\: \\ $$…
Question Number 90321 by M±th+et£s last updated on 22/Apr/20 $$\int\frac{\mathrm{1}}{{x}\sqrt[{\mathrm{3}}]{\mathrm{1}+{x}^{\mathrm{5}} }}{dx} \\ $$$$ \\ $$$$\int\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left({x}\right)+\mathrm{5}{sin}\left({x}\right)+\mathrm{6}}{dx} \\ $$$$ \\ $$$$\int\frac{\mathrm{2}{z}−\mathrm{5}}{\mathrm{4}{z}^{\mathrm{2}} +\mathrm{4}{z}+\mathrm{5}}{dz} \\ $$$$ \\ $$$$\int{sec}^{\mathrm{5}}…
Question Number 90308 by Tony Lin last updated on 22/Apr/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{x}}{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right){dx} \\ $$ Commented by mathmax by abdo last updated on 23/Apr/20 $${I}\:=\int_{\mathrm{0}}…
Question Number 90292 by mathmax by abdo last updated on 22/Apr/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{e}^{{zx}^{\mathrm{2}} } }{{x}^{\mathrm{2}} }{dx}\:{with}\:{z}\:{from}\:{C}\:{and}\:{Re}\left({z}\right)<\mathrm{0} \\ $$ Commented by mathmax by abdo last…
Question Number 90291 by mathmax by abdo last updated on 22/Apr/20 $${calculste}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{e}^{{zx}} }{{x}}{dx}\:\:{with}\:{z}\:{from}\:{C}\:{and}\:{Re}\left({z}\right)>\mathrm{0} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 90279 by mathmax by abdo last updated on 22/Apr/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}\:{dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 90256 by M±th+et£s last updated on 22/Apr/20 $$\int_{\mathrm{0}} ^{\pi} \frac{{cos}\left(\mathrm{2}{x}\right)}{\left({e}^{{x}} +{cos}\left({x}\right)\right)^{\mathrm{2}} }{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com