Question Number 155759 by talminator2856791 last updated on 04/Oct/21 $$\: \\ $$$$\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{ln}\left(\left(\mathrm{sin}\left({x}\right)+\mathrm{cos}\left({x}\right)\right)^{\mathrm{2}} +\mathrm{1}\right)\:{dx} \\ $$$$\: \\ $$ Commented by talminator2856791 last updated on…
Question Number 24670 by A1B1C1D1 last updated on 24/Nov/17 Answered by mrW1 last updated on 24/Nov/17 $${I}=\int\sqrt{{e}^{\lambda{x}} +{k}}\:{dx} \\ $$$${let}\:{u}=\sqrt{{e}^{\lambda{x}} +{k}} \\ $$$${du}=\frac{{e}^{\lambda{x}} \lambda}{\mathrm{2}\sqrt{{e}^{\lambda{x}} +{k}}}\:{dx}…
Question Number 90198 by M±th+et£s last updated on 21/Apr/20 $$\int{sin}\left({dx}\right)\: \\ $$ Commented by mr W last updated on 22/Apr/20 $${it}'{s}\:{not}\:{a}\:{defined}\:{thing}! \\ $$ Commented by…
Question Number 90192 by Rohit@Thakur last updated on 21/Apr/20 $$\int_{\mathrm{0}} ^{\mathrm{infinity}} \frac{\left(\mathrm{1}−\mathrm{e}^{−\mathrm{x}} \right)\mathrm{cosx}\:\mathrm{dx}}{\mathrm{x}} \\ $$ Commented by mathmax by abdo last updated on 22/Apr/20 $${A}\:=\int_{\mathrm{0}}…
Question Number 90171 by M±th+et£s last updated on 21/Apr/20 $${find}\:\int_{\mathrm{0}} ^{\mathrm{2}} \left(\lfloor{x}^{\mathrm{2}} \rfloor+\lfloor{x}\rfloor^{\mathrm{2}} \right){dx} \\ $$ Answered by TANMAY PANACEA. last updated on 21/Apr/20 $${is}\:{it}\:{floor}\:{function}\:\left({greatest}\:{integer}\:{function}\mathrm{3}\right.…
Question Number 90158 by I want to learn more last updated on 21/Apr/20 Commented by I want to learn more last updated on 21/Apr/20 $$\mathrm{The}\:\mathrm{question}\:\mathrm{is}\:\mathrm{prove}\:\mathrm{that}…
Question Number 155686 by john_santu last updated on 03/Oct/21 $$\:\:\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{dx}}{\mathrm{1}+\mathrm{tan}\:{x}}\:=? \\ $$ Answered by peter frank last updated on 03/Oct/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}}\mathrm{dx}…
Question Number 155674 by talminator2856791 last updated on 03/Oct/21 $$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\mathrm{monster}\:\mathrm{integral}} \\ $$$$\: \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}^{\mathrm{2}} \left(\mathrm{sin}\left(\mathrm{2}{x}\right)+\:\mathrm{cos}\left(\mathrm{3}{x}\right)\right)\:{dx} \\ $$$$\: \\ $$$$\: \\ $$…
Question Number 90135 by Ar Brandon last updated on 21/Apr/20 $$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{t}=\mathrm{0}} ^{+\infty} \frac{\mathrm{dt}}{\left(\mathrm{t}+\mathrm{1}\right)\left(\mathrm{t}+\mathrm{2}\right)…\left(\mathrm{t}+\mathrm{n}\right)} \\ $$ Answered by TANMAY PANACEA. last updated on 21/Apr/20 $${I}=\int\frac{{dt}}{\left({t}+\mathrm{1}\right)\left({t}+\mathrm{2}\right)\left({t}+\mathrm{3}\right)..\left({t}+{n}\right)}…
Question Number 90113 by M±th+et£s last updated on 21/Apr/20 $$\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} \left(\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{x}} }−\frac{\mathrm{1}}{{x}}\right){dx} \\ $$ Answered by maths mind last updated on 21/Apr/20 $$\Psi\left({z}\right)=\int_{\mathrm{0}}…