Question Number 91308 by jagoll last updated on 29/Apr/20
Question Number 25769 by abdo imad last updated on 14/Dec/17 $${a}−{nser}\:{to}\:{question}\:\mathrm{25765}…{we}\:{put}\:{I}=\int_{\mathrm{0}} ^{\infty} \left({cos}\left({x}^{\mathrm{2}{n}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}\:{and}\:{J}=\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{\mathrm{2}{n}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}…{we}\:{have}\:\mathrm{2}\left({I}+{iJ}\right)=\int_{{R}} {e}^{{ix}^{\mathrm{2}{n}} } \left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}}…
Question Number 25765 by abdo imad last updated on 14/Dec/17
Question Number 25762 by abdo imad last updated on 14/Dec/17
Question Number 91290 by mhmd last updated on 29/Apr/20 Commented by MJS last updated on 29/Apr/20
Question Number 91271 by mathmax by abdo last updated on 29/Apr/20
Question Number 91270 by mathmax by abdo last updated on 29/Apr/20
Question Number 91269 by mathmax by abdo last updated on 29/Apr/20
Question Number 156779 by Fresnel last updated on 15/Oct/21
Question Number 156775 by mnjuly1970 last updated on 15/Oct/21