Question Number 25887 by shivram198922@gmail.com last updated on 16/Dec/17 Answered by ajfour last updated on 16/Dec/17
Question Number 25868 by ajfour last updated on 16/Dec/17 Commented by ajfour last updated on 16/Dec/17
Question Number 25865 by anonymous_ last updated on 15/Dec/17
Question Number 25851 by abdo imad last updated on 15/Dec/17
Question Number 156914 by cortano last updated on 17/Oct/21 Answered by puissant last updated on 17/Oct/21
Question Number 156915 by mnjuly1970 last updated on 17/Oct/21 Answered by qaz last updated on 07/Nov/21
Question Number 25837 by mubeen897@hotmail.com last updated on 15/Dec/17
Question Number 25824 by abdo imad last updated on 15/Dec/17
Question Number 25821 by abdo imad last updated on 15/Dec/17 $${answer}\:{to}\:{q}\mathrm{25796}\:{f}_{} {ind}\:{the}\:{value}\:{off}\left({x}\right)=\:\int_{\mathrm{0}^{} } ^{\pi_{} } {ln}\left(\mathrm{1}+{xcos}\theta\right){d}\theta\:{with}\:\mathrm{0}<{x}<\mathrm{1}\:\:\:\partial{f}/\partial{x}=\:\int_{\mathrm{0}} ^{\pi} \:\:{cos}\theta\left(\mathrm{1}+{xcos}\theta\right)^{−\mathrm{1}} {d}\theta=\pi{x}^{−\mathrm{1}} −{x}^{−\mathrm{1}} \int_{\mathrm{0}} ^{\pi} \left(\mathrm{1}+{xcos}\theta\right)^{−\mathrm{1}} {d}\theta{and}\:{by}\:{the}\:{changeent}\:{tan}\theta={u}\:{then}\:{the}\:{changement}\:{u}=\left(\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}\right)^{−\mathrm{1}^{} }…
Question Number 25811 by ajfour last updated on 15/Dec/17 Commented by ajfour last updated on 15/Dec/17