Question Number 90110 by jagoll last updated on 21/Apr/20 $$\underset{\frac{\mathrm{2}}{\mathrm{3}}\mathrm{u}} {\overset{\mathrm{2u}} {\int}}\:\frac{\mathrm{e}^{−\frac{\mathrm{x}}{\mathrm{2}}} }{\mathrm{2}\pi\:\sqrt{\left(\mathrm{u}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}\right)\left(\frac{\mathrm{3x}}{\mathrm{2}}−\mathrm{u}\right)}}\:\mathrm{du}\: \\ $$$$\left(\mathrm{u}\:>\:\mathrm{0}\:\right) \\ $$ Commented by MJS last updated on 21/Apr/20 $$\mathrm{dependent}\:\mathrm{borders}\:\mathrm{are}\:\mathrm{not}\:\mathrm{allowed}…
Question Number 90055 by awlia last updated on 21/Apr/20 Commented by jagoll last updated on 21/Apr/20 $$\mathrm{vol}\:=\:\pi\:\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\:\left(\mathrm{4x}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} \:\mathrm{dx}\: \\ $$$$=\:\pi\:\left\{\:−\frac{\mathrm{x}^{\mathrm{2}} \left(\mathrm{4}−\mathrm{x}\right)^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{x}\left(\mathrm{4}−\mathrm{x}\right)^{\mathrm{4}}…
Question Number 90049 by awlia last updated on 21/Apr/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 90044 by abdomathmax last updated on 21/Apr/20 $${calculste}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{sin}\left(\left[\mathrm{2}{x}\right]\:−\left[\frac{\mathrm{1}}{{x}}\right]\right){dx} \\ $$ Commented by mathmax by abdo last updated on 24/Apr/20 $${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 90042 by abdomathmax last updated on 21/Apr/20 $${calculste}\:{I}\:=\int_{\mathrm{0}} ^{+\infty} \:\frac{{ch}\left({cos}\left(\mathrm{2}{x}\right)\right){dx}}{{x}^{\mathrm{2}} \:+\mathrm{4}} \\ $$$${and}\:{J}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\mathrm{2}{chx}\right){dx}}{{x}^{\mathrm{2}} \:+\mathrm{4}} \\ $$$${compare}\:{I}\:{and}\:{J} \\ $$ Commented by mathmax…
Question Number 90040 by abdomathmax last updated on 21/Apr/20 $${find}\:\:\int_{−\infty} ^{+\infty} \:\:\frac{{ch}\left({acosx}\:+{bsinx}\right)}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}{dx} \\ $$$${a}\:{and}\:{b}\:{reals}\:{given} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 90043 by abdomathmax last updated on 21/Apr/20 $${calculate}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({ax}\right)}{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx}\:{with}\:{a}>\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 90041 by abdomathmax last updated on 21/Apr/20 $${calculste}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xarctan}\left(\mathrm{2}{x}\right)}{\mathrm{9}+\mathrm{2}{x}^{\mathrm{2}} }{dx}\: \\ $$ Answered by mathmax by abdo last updated on 23/Apr/20 $${sorry}\:{Q}\:{is}\:\int_{\mathrm{0}}…
Question Number 155553 by talminator2856791 last updated on 02/Oct/21 $$\: \\ $$$$\int_{−\infty} ^{\:\infty} \:\frac{\mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left({x}^{\mathrm{3}} \right)}{\left(\mathrm{ln}\left(\left(\mathrm{sin}\left({x}\right)\mathrm{cos}\left({x}\right)\right)^{\mathrm{2}} \right)\right)^{\mathrm{2}} +\mathrm{1}}\:\:{dx}\:\: \\ $$$$\: \\ $$ Terms of Service…
Question Number 90003 by M±th+et£s last updated on 20/Apr/20 $${show}\:{that} \\ $$$$\int_{−\infty} ^{\infty} \frac{{dx}}{\mathrm{1}+\left({x}+{tan}\left({x}\right)\right)^{\mathrm{2}\:} }=\pi \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com