Menu Close

Category: Integration

answer-to-25955-we-introduce-the-parametric-function-F-t-0-ln-1-1-x-2-t-1-x-2-1-dx-after-verifying-that-F-is-derivable-on-0-we-find-F-t-0-1-1-x-2-t-1-dx-F-

Question Number 25960 by abdo imad last updated on 16/Dec/17 answerto25955.weintroducetheparametricfunctionF(t)=0ln(1+(1+x2)t)(1+x2)1dxafterverifyingthat$${F}\:{is}\:{derivable}\:{on}\left[\mathrm{0}.\propto\left[\:\:{we}\:{find}\:\:\:\partial{F}/\partial{t}=\:\:\int_{\mathrm{0}} ^{\infty} \left(\:\left(\mathrm{1}+\left(\mathrm{1}+{x}^{\mathrm{2}} \right){t}\right)^{−\mathrm{1}} {dx}\right.\right.\right.…

answer-to-25824-we-have-a-x-2-e-x-2-ln-a-so-for-a-gt-1-ln-a-ln-a-1-2-2-gt-gt-gt-gt-R-a-x-2-R-e-x-ln-a-1-2-2-dx-and-with-the-changement-t-x-ln-a-

Question Number 25932 by abdo imad last updated on 16/Dec/17 answerto25824wehaveax2=ex2ln(a)sofora>1$${ln}\left({a}\right)=\left(\:\left({ln}\left({a}\right)\right)^{\mathrm{1}/\mathrm{2}} \right)^{\mathrm{2}} >>>>\int_{{R}} {a}^{−^{} {x}^{\mathrm{2}} } \:=\:\int_{{R}} {e}^{−\left({x}\:\left({ln}\left({a}\right)^{\mathrm{1}/\mathrm{2}}…

Question-25887

Question Number 25887 by shivram198922@gmail.com last updated on 16/Dec/17 Answered by ajfour last updated on 16/Dec/17 0π[cos(pn)xcos(p+n)x]dx=sin(pn)πpnsin(p+n)πp+n$$=\frac{{p}\left[\mathrm{sin}\:\left({p}−{n}\right)\pi−\mathrm{sin}\:\left({p}+{n}\right)\pi\right]}{{p}^{\mathrm{2}} −{n}^{\mathrm{2}} }…