Menu Close

Category: Integration

I-dx-1-x-6-

Question Number 158591 by cortano last updated on 06/Nov/21 $$\:{I}=\int\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{6}} }\:=? \\ $$ Commented by tounghoungko last updated on 06/Nov/21 $${I}=\int\:\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}^{\mathrm{6}} +\mathrm{1}}\:{dx}−\int\:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{6}} +\mathrm{1}}\:{dx}…

prove-that-1-I-0-pi-2-sin-x-tan-x-sin-x-dx-pi-2-2-J-0-pi-2-sin-x-tan-x-sin-x-dx-1-e-1-2-pi-

Question Number 158590 by mnjuly1970 last updated on 06/Nov/21 $$ \\ $$$$\:\:\:{prove}\:{that}\: \\ $$$$\mathrm{1}.\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{sin}\left(\:{x}+{tan}\left({x}\right)\right)}{{sin}\left({x}\right)}{dx}\:=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{2}.\:\mathrm{J}\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{sin}\left({x}−{tan}\left({x}\right)\right)}{{sin}\left({x}\right)}{dx}=\left(\frac{\mathrm{1}}{{e}}\:−\frac{\mathrm{1}}{\mathrm{2}}\right)\pi \\ $$$$ \\ $$ Answered…

sin-1-x-2-dx-

Question Number 93045 by john santu last updated on 10/May/20 $$\int\:\mathrm{sin}^{−\mathrm{1}} \left(\sqrt{\frac{{x}}{\mathrm{2}}}\right)\:{dx}\: \\ $$ Commented by mathmax by abdo last updated on 10/May/20 $${I}\:=\int\:\:{arcsin}\left(\sqrt{\frac{{x}}{\mathrm{2}}}\right){dx}\:\:\:\:{changement}\:\sqrt{\frac{{x}}{\mathrm{2}}}={t}\:{give}\:\frac{{x}}{\mathrm{2}}={t}^{\mathrm{2}} \:\Rightarrow{x}=\mathrm{2}{t}^{\mathrm{2}}…

let-give-f-x-0-1-t-e-1-ix-t-dt-calculate-f-x-prove-that-R-x-i-2-f-x-2-then-find-0-e-t-2-dt-

Question Number 27496 by abdo imad last updated on 07/Jan/18 $${let}\:{give}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\propto} \:\:\frac{\mathrm{1}}{\:\sqrt{{t}}}\:{e}^{−\left(\mathrm{1}+{ix}\right){t}} {dt} \\ $$$${calculate}\:{f}^{'} \left({x}\right)\:{prove}\:{that}\:\exists\lambda\in{R}/\left({x}+{i}\right)^{\mathrm{2}} \:\left({f}\left({x}\right)\right)^{\mathrm{2}} =\:\lambda \\ $$$${then}\:{find}\:\:\int_{\mathrm{0}} ^{\propto} \:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:.…