Question Number 156869 by cortano last updated on 16/Oct/21 Answered by gsk2684 last updated on 16/Oct/21
Question Number 91326 by mhmd last updated on 29/Apr/20 Commented by mathmax by abdo last updated on 30/Apr/20 $${I}\:=\int\:\:\frac{{dx}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}\:\Rightarrow\:{I}\:=_{{x}−\mathrm{1}={t}} \:\:\:\:\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} \sqrt{\left({t}+\mathrm{1}\right)^{\mathrm{2}} −\left({t}+\mathrm{1}\right)+\mathrm{1}}} \…
Question Number 156860 by amin96 last updated on 16/Oct/21
Question Number 156849 by amin96 last updated on 16/Oct/21
Question Number 91310 by M±th+et+s last updated on 29/Apr/20
Question Number 25777 by abhishekkumar22121999@gmail.co last updated on 14/Dec/17
Question Number 156841 by mnjuly1970 last updated on 16/Oct/21 Answered by gsk2684 last updated on 16/Oct/21
Question Number 91308 by jagoll last updated on 29/Apr/20
Question Number 25769 by abdo imad last updated on 14/Dec/17 $${a}−{nser}\:{to}\:{question}\:\mathrm{25765}…{we}\:{put}\:{I}=\int_{\mathrm{0}} ^{\infty} \left({cos}\left({x}^{\mathrm{2}{n}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}\:{and}\:{J}=\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{\mathrm{2}{n}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}…{we}\:{have}\:\mathrm{2}\left({I}+{iJ}\right)=\int_{{R}} {e}^{{ix}^{\mathrm{2}{n}} } \left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}}…
Question Number 25765 by abdo imad last updated on 14/Dec/17