Menu Close

Category: Integration

Question-91326

Question Number 91326 by mhmd last updated on 29/Apr/20 Commented by mathmax by abdo last updated on 30/Apr/20 $${I}\:=\int\:\:\frac{{dx}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}\:\Rightarrow\:{I}\:=_{{x}−\mathrm{1}={t}} \:\:\:\:\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} \sqrt{\left({t}+\mathrm{1}\right)^{\mathrm{2}} −\left({t}+\mathrm{1}\right)+\mathrm{1}}} \

1-sin-x-cos-x-dx-

Question Number 25777 by abhishekkumar22121999@gmail.co last updated on 14/Dec/17 1sinx+cosxdx Answered by mrW1 last updated on 14/Dec/17 =12(sinxcosπ4+sinπ4cosx)dx=12sin(x+π4)dx$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}×\mathrm{ln}\:\frac{\mathrm{1}−\mathrm{cos}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)}{\mathrm{1}+\mathrm{cos}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)}+{C} \

Question-156841

Question Number 156841 by mnjuly1970 last updated on 16/Oct/21 Answered by gsk2684 last updated on 16/Oct/21 letC=cosπ2n+1.cos2π2n+1.cos3π2n+1cos(n1)π2n+1.cosnπ2n+1letS=sinπ2n+1.sin2π2n+1.sin3π2n+1sin(n1)π2n+1.sinnπ2n+12n.S.C=(2sinπ2n+1cosπ2n+1)(2sin2π2n+1cos2π2n+1)(2sin3π2n+1cos3π2n+1)(2sin(n1)π2n+1cos(n1)π2n+1)(2sinnπ2n+1cosnπ2n+1)$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{2}{n}+\mathrm{1}}.\mathrm{sin}\:\frac{\mathrm{4}\pi}{\mathrm{2}{n}+\mathrm{1}}.\mathrm{sin}\:\frac{\mathrm{6}\pi}{\mathrm{2}{n}+\mathrm{1}}…\mathrm{sin}\:\frac{\mathrm{2}\left({n}−\mathrm{1}\right)\pi}{\mathrm{2}{n}+\mathrm{1}}.\mathrm{sin}\frac{\mathrm{2}{n}\pi}{\mathrm{2}{n}+\mathrm{1}} \

a-nser-to-question-25765-we-put-I-0-cos-x-2n-1-x-2-1-dx-and-J-0-sin-x-2n-1-x-2-1-dx-we-have-2-I-iJ-R-e-ix-2n-1-x-2-1-dx-let-f-z-e-ix-2n-1-x-2-

Question Number 25769 by abdo imad last updated on 14/Dec/17 $${a}−{nser}\:{to}\:{question}\:\mathrm{25765}…{we}\:{put}\:{I}=\int_{\mathrm{0}} ^{\infty} \left({cos}\left({x}^{\mathrm{2}{n}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}\:{and}\:{J}=\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{\mathrm{2}{n}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}…{we}\:{have}\:\mathrm{2}\left({I}+{iJ}\right)=\int_{{R}} {e}^{{ix}^{\mathrm{2}{n}} } \left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}}…