Question Number 64529 by mathmax by abdo last updated on 19/Jul/19 $${calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{{dx}}{\:\sqrt{{x}}}\:\:\:{by}\:{Rieman}\:{sum}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 64528 by mathmax by abdo last updated on 19/Jul/19 $${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{−{x}} {dx}\:\:\:{study}\:{first}\:{the}\:{convergence}. \\ $$ Commented by mathmax by abdo last updated on…
Question Number 64525 by mathmax by abdo last updated on 19/Jul/19 $${study}\:{the}\:{convergence}\:{of}\:\Sigma\:{U}_{{n}} \:\:\:{with} \\ $$$${U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({nx}\right)}{{x}^{\mathrm{2}} \:+{n}^{\mathrm{2}} }{dx}\:\:\:\left({n}\geqslant\mathrm{1}\right) \\ $$ Commented by mathmax…
Question Number 130053 by Lordose last updated on 22/Jan/21 $$\mathrm{Show}\:\mathrm{that} \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$ Answered by Ar Brandon last…
Question Number 130029 by mathmax by abdo last updated on 22/Jan/21 $$\left.\mathrm{1}\right)\:\mathrm{decompose}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{3}} \left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\int_{\mathrm{3}} ^{\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{3}} \left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\…
Question Number 64477 by Chi Mes Try last updated on 18/Jul/19 $${pls}\:\:{i}\:{need}\:{it}\:{urgently}…\:{am}\:{stuck} \\ $$$${workings}\:{please} \\ $$$$\left(\mathrm{1}\right)\:\:\int{Ln}\left(\mathrm{1}−{Lnx}\right){dx} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\:\int\frac{\mathrm{1}}{{Lnx}}{dx} \\ $$$$ \\ $$$$\left(\mathrm{3}\right)\int\:{Ln}\left(−\mathrm{2}{Lnx}\right){dx} \\…
Question Number 130011 by mnjuly1970 last updated on 21/Jan/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{advanced}\:\:{calculus}… \\ $$$$\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\Phi=\underset{\:\:\:\:\:\mathbb{R}} {\int}{e}^{\left(−{e}^{{x}} +\mathrm{2}{x}\right)} {x}^{\mathrm{2}} {dx}=\left(\mathrm{1}−\gamma\right)^{\mathrm{2}} +\frac{\pi^{\mathrm{2}} −\mathrm{6}}{\mathrm{6}} \\ $$$$ \\ $$ Answered…
Question Number 64463 by aliesam last updated on 18/Jul/19 $$\int\sqrt{{sec}\left({x}\right)}\:{dx} \\ $$ Commented by Tony Lin last updated on 18/Jul/19 $$\int\sqrt{{secx}}{dx} \\ $$$$=\int\frac{{dx}}{\:\sqrt{{cosx}}}\: \\ $$$$=\int\frac{{dx}}{\:\sqrt{\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}}…
Question Number 129996 by Eric002 last updated on 21/Jan/21 $$\int\frac{\sqrt[{\mathrm{5}}]{{x}^{\mathrm{2}} }}{\:\sqrt[{\mathrm{3}}]{\mathrm{1}+\sqrt{{x}^{\mathrm{5}} }}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 129991 by pipin last updated on 21/Jan/21 $$\:\int\:\left(\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \right)\left(\frac{\boldsymbol{\mathrm{x}}^{\mathrm{6}} +\boldsymbol{\mathrm{x}}^{\mathrm{5}} +\mathrm{5}\boldsymbol{\mathrm{x}}^{\mathrm{4}} }{\left(\mathrm{1}+\boldsymbol{\mathrm{x}}\right)^{\mathrm{6}} }\right)\boldsymbol{\mathrm{dx}}\:=\:… \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com