Question Number 64805 by mmkkmm000m last updated on 21/Jul/19 $$\int{log}\frac{\left(\mathrm{1}+{sinhx}\right)}{\left(\mathrm{1}−{sinhx}\right)}{tanhx}\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 64801 by mmkkmm000m last updated on 21/Jul/19 $$\int\left({cos}^{\mathrm{4}} {x}+{sin}^{\mathrm{4}} {x}\right)/\left({cos}\mathrm{2}{x}+\mathrm{1}\right){dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 64802 by mmkkmm000m last updated on 21/Jul/19 $$\int\left({cos}^{\mathrm{4}} {x}+{sin}^{\mathrm{4}} {x}\right)/\left({cos}\mathrm{2}{x}+\mathrm{1}\right){dx} \\ $$ Commented by mathmax by abdo last updated on 22/Jul/19 $${let}\:{I}\:=\int\:\:\frac{{cos}^{\mathrm{4}} {x}+{sin}^{\mathrm{4}}…
Question Number 130326 by rs4089 last updated on 24/Jan/21 Answered by Lordose last updated on 24/Jan/21 $$ \\ $$$$\Omega\left(\mathrm{p}\right)\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{sin}\left(\mathrm{px}\right)}{\mathrm{x}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)}\mathrm{dx} \\ $$$$\Omega'\left(\mathrm{p}\right)\:=\:\int_{\mathrm{0}} ^{\:\infty}…
Question Number 130320 by benjo_mathlover last updated on 24/Jan/21 $$\:\int\:\frac{\mathrm{x}−\mathrm{1}}{\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{2}\right)^{\mathrm{2}} }\:\mathrm{dx}\: \\ $$ Answered by EDWIN88 last updated on 24/Jan/21 $$\mathrm{Let}\:\mathcal{E}\:=\:\int\:\frac{{x}−\mathrm{1}}{\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}\right)^{\mathrm{2}} }\:{dx} \\…
Question Number 130306 by benjo_mathlover last updated on 24/Jan/21 $$\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{x}\:\mathrm{cos}\:\left(\mathrm{x}\right)\:\mathrm{ln}\:\left(\mathrm{x}\right)\mathrm{e}^{−\mathrm{x}} \:\mathrm{dx}\:?\: \\ $$ Answered by Dwaipayan Shikari last updated on 24/Jan/21 $${I}\left({a}\right)=\int_{\mathrm{0}} ^{\infty}…
Question Number 64762 by Lontum Hans-Sandys last updated on 21/Jul/19 $$\mathrm{Given}\:\mathrm{that}\:\mathrm{g}\left(\mathrm{x}\right)=\frac{\mathrm{2}}{\left(\mathrm{1}+\mathrm{x}\right)\left(\mathrm{1}+\mathrm{3x}^{\mathrm{2}} \right.} \\ $$$$\left.\mathrm{a}\right)\:\mathrm{express}\:\mathrm{g}\left(\mathrm{x}\right)\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fractions}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{evaluate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{g}\left(\left(\mathrm{x}\right)\:\mathrm{dx}.\right. \\ $$ Commented by mathmax by abdo…
Question Number 130296 by sumit Singh last updated on 24/Jan/21 $$\int\left({x}^{\mathrm{2}} /\mathrm{2}+{x}\right){dx} \\ $$ Commented by EDWIN88 last updated on 24/Jan/21 $$\int\:\left(\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{x}\right)\mathrm{dx}\:\mathrm{or}\:\int\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}+\mathrm{x}}\:\mathrm{dx}\:? \\…
Question Number 64759 by aliesam last updated on 21/Jul/19 $$\int\frac{{ln}\left({ln}\left({x}\right)\right)}{\left({ln}\left({x}\right)\right)^{{n}} }\:{dx}\:\:\:,\:\:\:{n}\neq\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 130285 by Lordose last updated on 23/Jan/21 Answered by Olaf last updated on 24/Jan/21 $$\Omega\:=\:\int_{\mathrm{2}} ^{\mathrm{6}} \underset{{k}=\mathrm{1}} {\overset{\mathrm{9}} {\prod}}\left({x}−{k}\right){dx} \\ $$$$\mathrm{Let}\:{u}\:=\:{x}−\mathrm{5} \\ $$$$\Omega\:=\:\int_{−\mathrm{3}}…