Menu Close

Category: Integration

Evaluate-0-1-x-2-1-x-3-dx-and-given-that-I-n-0-1-x-n-1-x-3-1-2-dx-show-that-2n-1-I-n-2-2-2-n-1-for-n-3-Hence-evaluate-I-8-I-7-and-I-6-

Question Number 89273 by Ar Brandon last updated on 16/Apr/20 $${Evaluate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }}{dx}\:{and}\:{given}\:{that}\:{I}_{{n}\:} =\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {dx} \\ $$$${show}\:{that}\:\left(\mathrm{2}{n}−\mathrm{1}\right){I}_{{n}} =\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}\left({n}−\mathrm{1}\right)\:{for}\:{n}\geqslant\mathrm{3}. \\…

2-1-x-1-x-3-

Question Number 89237 by cindiaulia last updated on 16/Apr/20 $$\int_{\mathrm{2}} ^{\mathrm{1}} \left(\mathrm{x}+\mathrm{1}\right)\left(\sqrt{\left.\mathrm{x}+\mathrm{3}\right)}\right. \\ $$ Commented by niroj last updated on 16/Apr/20 $$=\:\int_{\mathrm{2}} ^{\mathrm{1}} \left(\mathrm{x}+\mathrm{1}\right)\sqrt{\mathrm{x}+\mathrm{3}}\:\:\mathrm{dx} \\…

4-5-x-2-x-4-

Question Number 89228 by cindiaulia last updated on 16/Apr/20 $$\underset{\mathrm{4}} {\overset{\mathrm{5}} {\int}}\mathrm{x}^{\mathrm{2}} \sqrt{\mathrm{x}−\mathrm{4}} \\ $$ Commented by jagoll last updated on 16/Apr/20 $$\sqrt{{x}−\mathrm{4}}\:=\:{t}\:\Rightarrow{x}={t}^{\mathrm{2}} +\mathrm{4} \\…

x-3-2-x-3-x-1-x-2-

Question Number 89226 by cindiaulia last updated on 16/Apr/20 $$\int\left(\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{2}}{\mathrm{x}^{\mathrm{3}} }\right)\sqrt{\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \\ $$ Commented by jagoll last updated on 16/Apr/20 $$\int\:\left(\mathrm{1}+\frac{\mathrm{2}}{{x}^{\mathrm{3}} }\right)\:\sqrt{{x}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\:{dx}\:…

tan-x-1-cos-2-x-

Question Number 89213 by cindiaulia last updated on 16/Apr/20 $$\int\frac{\sqrt{\mathrm{tan}\:\mathrm{x}\:+\:\mathrm{1}}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}} \\ $$ Answered by $@ty@m123 last updated on 16/Apr/20 $$\int\sqrt{\mathrm{tan}\:\mathrm{x}\:+\:\mathrm{1}}\:.\mathrm{sec}\:^{\mathrm{2}} {xdx} \\ $$$$\int\sqrt{\mathrm{1}+{t}}{dt}\:,\:\:{t}=\mathrm{tan}\:{x} \\…

0-pi-2-log-sin-x-dx-

Question Number 89161 by M±th+et£s last updated on 15/Apr/20 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sin}\left({x}\right)\right){dx} \\ $$ Commented by niroj last updated on 15/Apr/20 $$\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\:\mathrm{sin}\:\mathrm{x}\:\mathrm{dx}…..\left(\mathrm{i}\right) \\…

1-x-x-2-x-1-dx-2-1-x-1-x-2-x-1-dx-3-x-2-4x-10-dx-

Question Number 89146 by M±th+et£s last updated on 15/Apr/20 $$\left.\mathrm{1}\right)\int{x}\sqrt{\frac{{x}−\mathrm{2}}{{x}+\mathrm{1}}}\:{dx} \\ $$$$\left.\mathrm{2}\right)\int\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{dx} \\ $$$$\left.\mathrm{3}\right)\int\sqrt{−{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{10}}\:{dx} \\ $$ Commented by mathmax by abdo last updated…