Menu Close

Category: Integration

ln-x-1-dx-dy-

Question Number 88789 by M±th+et£s last updated on 12/Apr/20 $$\int\int{ln}\left({x}+\mathrm{1}\right)\:{dx}\:{dy} \\ $$ Commented by mr W last updated on 13/Apr/20 $$\int\:\mathrm{ln}\left(\mathrm{x}+\mathrm{1}\right)\:\mathrm{dx}\:=\:\int\:\mathrm{ln}\:\mathrm{u}\:\mathrm{du} \\ $$$$….. \\ $$$$=\:\left({x}+\mathrm{1}\right)\:\mathrm{ln}\left({x}+\mathrm{1}\right)−\left({x}+\mathrm{1}\right)+{c}\left({y}\right)…

Question-154318

Question Number 154318 by liberty last updated on 17/Sep/21 Answered by MJS_new last updated on 17/Sep/21 $$\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}\:=\sqrt{\mathrm{2}}\mathrm{sin}\:\frac{\mathrm{4}{x}+\pi}{\mathrm{4}}\:= \\ $$$$\:\:\:\:\:\left[\mathrm{sin}\:\theta\:=\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \:\frac{\mathrm{2}\theta−\pi}{\mathrm{4}}\right] \\ $$$$=\sqrt{\mathrm{2}}\left(\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \:\frac{\mathrm{4}{x}−\pi}{\mathrm{8}}\right) \\ $$$$\int\sqrt{\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}}{dx}=…

0-1-x-i-1-1-x-dx-ln-1-x-x-i-1-0-1-1-i-0-1-x-i-ln-1-x-dx-1-i-0-1-n-1-x-n-i-n-dx-1-i-1-n-n-i-1-1-n-1

Question Number 154223 by mnjuly1970 last updated on 15/Sep/21 $$ \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{\:{i}+\mathrm{1}} }{\mathrm{1}−{x}}\:{dx}\:=\:\left[−{ln}\left(\mathrm{1}−{x}\right){x}^{\:{i}+\mathrm{1}} \right]_{\mathrm{0}} ^{\:\mathrm{1}} \\ $$$$\:\:\:+\:\left(\mathrm{1}+{i}\right)\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\:{i}} \:{ln}\:\left(\mathrm{1}−{x}\:\right){dx} \\ $$$$\:\:\:=\:\left(\mathrm{1}+{i}\:\right)\:\int_{\mathrm{0}} ^{\:\mathrm{1}}…

prove-that-0-0-log-1-e-x-yLi-2-e-x-y-Li-3-e-x-y-1-e-x-y-e-x-y-dxdy-21-8-6-2-3-by-MATH-AMIN-

Question Number 154208 by amin96 last updated on 15/Sep/21 $$\because\therefore\because\therefore{prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{{log}\left(\mathrm{1}−{e}^{−{x}} \right)\left({yLi}_{\mathrm{2}} \left({e}^{−{x}−{y}} \right)+{Li}_{\mathrm{3}} \left({e}^{−{x}−{y}} \right)\right.}{\mathrm{1}−{e}^{{x}+{y}} }{e}^{{x}+{y}} {dxdy}=\frac{\mathrm{21}}{\mathrm{8}}\zeta\left(\mathrm{6}\right)+\zeta^{\mathrm{2}} \left(\mathrm{3}\right) \\…