Question Number 23061 by nawroozdawry last updated on 25/Oct/17 $$\int_{\mathrm{0}} ^{\infty} \mathrm{j}_{\mathrm{4}} \left(\mathrm{x}\right)\mathrm{dx}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 88586 by M±th+et£s last updated on 11/Apr/20 $$\int\frac{\sqrt{{cos}\left(\mathrm{2}{x}\right)+\mathrm{3}}}{{cos}\left({x}\right)}{dx} \\ $$ Answered by TANMAY PANACEA. last updated on 11/Apr/20 $$\int\frac{{cos}\mathrm{2}{x}+\mathrm{3}}{{cosx}\sqrt{\mathrm{3}+{cos}\mathrm{2}{x}}}{dx} \\ $$$$\int\frac{\mathrm{2}{cos}^{\mathrm{2}} {x}+\mathrm{2}}{{cosx}\sqrt{\mathrm{2}{cos}^{\mathrm{2}} {x}+\mathrm{2}}}…
Question Number 88569 by M±th+et£s last updated on 11/Apr/20 Commented by M±th+et£s last updated on 11/Apr/20 $${prove}\:{that} \\ $$$$ \\ $$$$\because\emptyset\:{lerch}\:{transcendent} \\ $$ Answered by…
Question Number 88555 by M±th+et£s last updated on 11/Apr/20 $${slove}\: \\ $$$$\lceil\frac{{x}}{{a}}\rceil<{a}\:\:\: \\ $$$${when}\:{a}>\mathrm{1} \\ $$$$\lceil…\rceil\:{is}\:{ceil}\:{function} \\ $$ Answered by mr W last updated on…
Question Number 154080 by iloveisrael last updated on 14/Sep/21 $$\:\:\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:^{\mathrm{2}} \left(\frac{\mathrm{1}+\mathrm{sin}\:{t}}{\mathrm{1}−\mathrm{sin}\:{t}}\right){dt} \\ $$ Answered by mindispower last updated on 14/Sep/21 $$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{4}{ln}^{\mathrm{2}}…
Question Number 88547 by ajfour last updated on 11/Apr/20 $${prove}\:{for}\:\left(\mathrm{0}<{a}<\mathrm{2}\right) \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \frac{{x}^{{a}−\mathrm{1}} {dx}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }\:=\:\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}\mathrm{cos}\:\left(\frac{\mathrm{2}\pi{a}+\pi}{\mathrm{6}}\right)\mathrm{cosec}\:\pi{a}\:. \\ $$ Answered by mind is power last updated…
Question Number 154062 by amin96 last updated on 13/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 154037 by qaz last updated on 13/Sep/21 $$\mathrm{Prove}::\:\:\:\underset{\mathrm{n}=−\infty} {\overset{+\infty} {\sum}}\mathrm{arctan}\:\left(\frac{\mathrm{sinh}\:\mathrm{x}}{\mathrm{cosh}\:\mathrm{n}}\right)=\pi\mathrm{x} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 154038 by talminator2856791 last updated on 13/Sep/21 $$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{monster}\:\mathrm{integral} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left({x}^{\mathrm{3}} \right)\:{dx} \\ $$$$\: \\ $$$$\: \\…
Question Number 88490 by M±th+et£s last updated on 11/Apr/20 $$\int_{\mathrm{1}} ^{\infty} \:\frac{{x}^{\mathrm{4}} }{\mathrm{4}^{{x}} }{dx}=? \\ $$ Commented by jagoll last updated on 11/Apr/20 Commented by…