Menu Close

Category: Integration

x-2-f-x-3-1-1-x-2-f-1-x-1-x-4x-3-1-x-4-5-0-1-f-x-dx-

Question Number 157655 by tounghoungko last updated on 26/Oct/21 $$\:\:{x}^{\mathrm{2}} \:{f}\left({x}^{\mathrm{3}} \right)+\frac{\mathrm{1}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }\:{f}\left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\right)=\mathrm{4}{x}^{\mathrm{3}} \left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\mathrm{5}} \\ $$$$\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} {f}\left({x}\right)\:{dx}\:=? \\ $$ Commented by cortano last…

let-give-x-0-t-x-1-e-t-dt-with-x-gt-0-prove-that-lim-n-gt-0-n-1-t-n-n-t-x-1-dt-x-

Question Number 26566 by abdo imad last updated on 26/Dec/17 $${let}\:{give}\:\Gamma\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt}\:{with}\:{x}>\mathrm{0}\:{prove}\:{that} \\ $$$$\:{lim}\:_{{n}−>\propto} \int_{\mathrm{0}} ^{{n}} \:\left(\mathrm{1}−\frac{{t}}{{n}}\right)^{{n}} {t}^{{x}−\mathrm{1}} {dt}\:\:=\:\Gamma\left({x}\right) \\ $$ Commented…

let-give-x-0-t-x-1-e-t-dt-and-x-gt-0-gamma-euler-function-prove-that-x-lim-n-gt-n-n-x-n-n-1-n-2-n-x-

Question Number 26564 by abdo imad last updated on 26/Dec/17 $${let}\:{give}\:\Gamma\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt}\:\:\:{and}\:\:\:{x}>\mathrm{0}\left({gamma}\:{euler}\:{function}\right) \\ $$$${prove}\:{that}\:\:\Gamma\left({x}\right)\:\:={lim}_{{n}−>\propto} \:\frac{\left({n}!\right)\:{n}^{{x}} }{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)…\left({n}+{x}\right)} \\ $$ Terms of Service Privacy…

let-put-F-x-0-e-tx-sint-t-dt-with-x-0-we-accept-that-F-is-class-C-1-on-0-calculate-F-x-and-find-F-x-then-find-the-value-of-0-sint-t-dt-

Question Number 26559 by abdo imad last updated on 26/Dec/17 $${let}\:{put}\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{tx}} \:\frac{{sint}}{{t}}\:{dt}\:\:\:{with}\:\:{x}\geqslant\mathrm{0} \\ $$$${we}\:{accept}\:{that}\:{F}\:{is}\:{class}\:{C}^{\mathrm{1}} \:{on}\:\left[\mathrm{0},\propto\left[\right.\right. \\ $$$${calculate}\:\:\frac{\partial{F}}{\partial{x}}\:\:{and}\:{find}\:{F}\left({x}\right) \\ $$$${then}\:\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sint}}{{t}}\:{dt} \\ $$…