Question Number 22937 by RoachDN last updated on 24/Oct/17 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 88462 by M±th+et£s last updated on 10/Apr/20 Commented by mathmax by abdo last updated on 10/Apr/20 $${S}_{{n}} =\int_{\mathrm{7}{n}+\mathrm{1}} ^{\mathrm{22}{n}} \:\frac{{dt}}{\mathrm{2}{t}+\mathrm{1}}\:\Rightarrow{S}_{{n}} =\left[\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}{t}+\mathrm{1}\right)\right]_{\mathrm{7}{n}+\mathrm{1}} ^{\mathrm{22}{n}} \\…
Question Number 88438 by M±th+et£s last updated on 10/Apr/20 $$\int\frac{{x}^{\mathrm{5}} +\mathrm{1}}{{x}^{\mathrm{5}} −\mathrm{1}}{dx} \\ $$ Answered by Kunal12588 last updated on 10/Apr/20 $${I}=\int\frac{{x}^{\mathrm{5}} −\mathrm{1}}{{x}^{\mathrm{5}} −\mathrm{1}}{dx}+\mathrm{2}\int\frac{{dx}}{{x}^{\mathrm{5}} −\mathrm{1}}…
Question Number 88429 by M±th+et£s last updated on 10/Apr/20 $${show}\:{that} \\ $$$$\int_{\mathrm{0}\:} ^{\mathrm{1}} {ln}\left({x}\right)\:{sin}^{−\mathrm{1}} \sqrt{{x}}\:{dx}=\:\frac{\pi}{\mathrm{2}}\left({ln}\left(\mathrm{2}\right)−\mathrm{1}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 88422 by abdomathmax last updated on 10/Apr/20 $${calculate}\:\:\int_{\mathrm{1}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$ Commented by mathmax by abdo last updated on…
Question Number 88414 by abdomathmax last updated on 10/Apr/20 $${find}\:{approcimstive}\:{value}\:{of}\:\:\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}}{{sinx}}{dx} \\ $$ Commented by mathmax by abdo last updated on 12/Apr/20 $${we}\:{have}\:{sinx}\:={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\:+….\Rightarrow{x}−\frac{{x}^{\mathrm{3}}…
Question Number 153949 by talminator2856791 last updated on 12/Sep/21 $$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left({x}^{\mathrm{3}} \right){dx} \\ $$$$\: \\ $$ Answered by mindispower last updated…
Question Number 88415 by abdomathmax last updated on 10/Apr/20 $${find}\:{L}\left(\frac{\mathrm{1}−{cosx}}{{x}^{\mathrm{2}} }\right)\:{with}\:{L}\:{lsplace}\:{transform} \\ $$ Commented by jagoll last updated on 10/Apr/20 $$\mathscr{L}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)\:=\:\mathrm{1}−\frac{\mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:=\:\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}} \\…
Question Number 88413 by 675480065 last updated on 10/Apr/20 $$\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$$$ \\ $$ Commented by abdomathmax last updated on 10/Apr/20…
Question Number 153946 by talminator2856791 last updated on 12/Sep/21 $$\: \\ $$$$\:\:\mathrm{show}\:\mathrm{whether} \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left(\sqrt{{x}}\right){dx} \\ $$$$\:\:\mathrm{is}\:\mathrm{solvable} \\ $$$$\: \\ $$ Terms of…