Menu Close

Category: Integration

x-x-3-1-x-4-dx-

Question Number 88206 by jagoll last updated on 09/Apr/20 $$\int\:\:\frac{\mathrm{x}+\mathrm{x}^{\mathrm{3}} }{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\:\mathrm{dx}\: \\ $$ Answered by john santu last updated on 09/Apr/20 $$=\:\int\:\frac{{x}}{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:+\:\int\:\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{4}}…

prove-that-0-1-x-2-2-x-2-1-dx-pi-2pi-2-1-4-2-1-4-4-2pi-

Question Number 88197 by M±th+et£s last updated on 08/Apr/20 $${prove}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{{x}^{\mathrm{2}} −\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{1}}\:}{dx}=\frac{\pi\sqrt{\mathrm{2}\pi}}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}+\frac{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}\sqrt{\mathrm{2}\pi}} \\ $$ Terms of Service Privacy Policy…

Question-88181

Question Number 88181 by ubaydulla last updated on 08/Apr/20 Commented by mathmax by abdo last updated on 09/Apr/20 $$\left.\mathrm{5}\right)\:{y}^{'} \:+{y}\:={e}^{\mathrm{2}{x}} \:\:\:\left({he}\right)\rightarrow{y}^{'} \:+{y}\:=\mathrm{0}\Rightarrow\frac{{y}^{'} }{{y}}=−\mathrm{1}\:\Rightarrow{ln}\mid{y}\mid=−{x}\:+{c}\:\Rightarrow \\ $$$${y}\:={k}\:{e}^{−{x}}…