Question Number 87910 by mohamedhope last updated on 07/Apr/20 $$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 87903 by mathmax by abdo last updated on 07/Apr/20 $${find}\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({xy}\right)}{\left({x}+{y}\right)^{\mathrm{2}} }{dxdy} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 87902 by mathmax by abdo last updated on 07/Apr/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} }{\left({x}+{y}\right)^{\mathrm{2}} }{dxdy} \\ $$ Terms of Service…
Question Number 87901 by mathmax by abdo last updated on 07/Apr/20 $${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\frac{{arctan}\left({x}+{y}\right)}{{x}+{y}}{dxdy} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 87893 by jagoll last updated on 07/Apr/20 $$\int\:\sqrt{\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}}}\:\:\mathrm{dx}\: \\ $$ Answered by jagoll last updated on 07/Apr/20 Terms of Service Privacy Policy Contact:…
Question Number 153430 by mnjuly1970 last updated on 07/Sep/21 Commented by mnjuly1970 last updated on 07/Sep/21 $${thanks}\:{alot}…. \\ $$ Commented by mindispower last updated on…
Question Number 87881 by Rio Michael last updated on 06/Apr/20 $$\:\int_{−\infty} ^{\:+\infty} \frac{\mathrm{1}}{{x}}\:{dx}\:=\: \\ $$ Commented by mathmax by abdo last updated on 06/Apr/20 $${the}\:{function}\:{x}\rightarrow\frac{\mathrm{1}}{{x}}\:{is}\:{odd}\:\Rightarrow\int_{−\infty}…
Question Number 87876 by M±th+et£s last updated on 06/Apr/20 $${prove}\:{that} \\ $$$$\Gamma\left({z}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} \:{x}^{{z}−\mathrm{1}} \:{dx},{Re}\left({z}\right)>\mathrm{0} \\ $$ Commented by Joel578 last updated on 07/Apr/20…
Question Number 87854 by jagoll last updated on 06/Apr/20 $$\int\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{x}+\mathrm{2cos}\:\mathrm{x}+\mathrm{3}}\:\mathrm{dx} \\ $$ Commented by mathmax by abdo last updated on 06/Apr/20 $${I}\:=\int\:\:\frac{{dx}}{\mathrm{2}{cosx}\:+{sinx}\:+\mathrm{3}}\:{we}\:{do}\:{the}\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:\Rightarrow \\ $$$${I}\:=\int\:\:\:\frac{\mathrm{2}{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{2}\frac{\mathrm{1}−{t}^{\mathrm{2}}…
Question Number 87839 by jagoll last updated on 06/Apr/20 $$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\:\frac{\mathrm{sin}\:\mathrm{4x}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\:\sqrt{\mathrm{tan}\:^{\mathrm{4}} \mathrm{x}+\mathrm{1}}}\:\mathrm{dx} \\ $$ Answered by redmiiuser last updated on 06/Apr/20 $$\sqrt{\mathrm{tan}\:^{\mathrm{4}} {x}+\mathrm{1}}…