Menu Close

Category: Integration

hello-floor-function-a-b-x-dx-a-b-z-and-b-gt-a-0-b-x-dx-0-a-x-dx-b-2-b-2-a-2-a-2-1-now-m-k-x-dx-when-m-k-z-when-m-lt-a-lt-b-lt-k-b-k-and-a

Question Number 88955 by M±th+et£s last updated on 14/Apr/20 hellofloorfunctionabxdxa,bzandb>a$$=\int_{\mathrm{0}} ^{{b}} \lfloor{x}\rfloor\:{dx}\:−\int_{\mathrm{0}} ^{{a}} \lfloor{x}\rfloor\:{dx}\:=\frac{{b}^{\mathrm{2}} −{b}}{\mathrm{2}}−\frac{{a}^{\mathrm{2}} −{a}}{\mathrm{2}}\:….\left(\mathrm{1}\right) \

Show-that-volume-of-a-region-of-space-bounded-by-a-boundary-surface-S-is-V-1-3-S-rcos-dA-being-the-angle-between-the-position-vector-of-a-point-P-on-the-surface-and-the-outer-normal-to

Question Number 23393 by ajfour last updated on 29/Oct/17 ShowthatvolumeofaregionofspaceboundedbyaboundarysurfaceSisV=13SrcosθdA.θbeingtheanglebetweenthepositionvectorofapointPonthesurface,andtheouternormaltothesurfaceatP.$${r}\:{is}\:{the}\:{distance}\:{of}\:{point}\:{P}\:{from}…