Question Number 91735 by frc2crc last updated on 02/May/20 $$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \sqrt[{{k}}]{\mathrm{tan}^{{m}} \:\alpha}\:{d}\alpha\:{for}\:{m}>\mathrm{1} \\ $$ Commented by mathmax by abdo last updated on 03/May/20 $${I}\:=\int_{\mathrm{0}}…
Question Number 157257 by john_santu last updated on 21/Oct/21 $$\int\:\frac{\mathrm{sin}\:^{\mathrm{6}} {x}+\mathrm{cos}\:^{\mathrm{5}} {x}}{\mathrm{sin}\:^{\mathrm{2}} {x}\:\mathrm{cos}\:^{\mathrm{2}} {x}}\:{dx} \\ $$ Answered by qaz last updated on 21/Oct/21 $$\int\frac{\mathrm{sin}\:^{\mathrm{6}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{5}}…
Question Number 91714 by jagoll last updated on 02/May/20 Commented by Tony Lin last updated on 02/May/20 $$\int_{\mathrm{0}} ^{\mathrm{2}} \left({ln}\mathrm{3}^{\frac{\mathrm{2}\pi}{\mathrm{3}}} \right){e}^{{x}^{\mathrm{2}} } {dx} \\ $$$$=\left({ln}\mathrm{3}^{\frac{\mathrm{2}\pi}{\mathrm{3}}}…
Question Number 157254 by physicstutes last updated on 21/Oct/21 $$\mathrm{Show}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}{dx}\:=\:\mathrm{ln}\left(\frac{\mathrm{4}}{\mathrm{3}}\right) \\ $$ Answered by puissant last updated on 21/Oct/21 $$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 157251 by mnjuly1970 last updated on 21/Oct/21 $$ \\ $$$$\:\:\:\:\:#\:\mathrm{Nice}\:\mathrm{Mathematics}\:# \\ $$$$\:\:\:\:\:\:\:…{calculation}\:… \\ $$$$\:\:\:\:\:\:\:\:\Omega\::=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{tanh}^{\:−\mathrm{1}} \:\left(\sqrt{\:{x}}\:\right)}{{x}}\:{dx}\:\overset{?} {=}\:\frac{\:\pi^{\:\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:\:−−−−−−−−−−−−− \\ $$$$\:\:\:\:\Omega\::\overset{\sqrt{{x}}\:=\:{t}}…
Question Number 91703 by DuDono last updated on 02/May/20 $$\int_{−\infty} ^{+\infty} {f}^{\mathrm{2}} \left({x}\right){dx}\:\forall{f} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 26142 by moxhix last updated on 21/Dec/17 $$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\mathrm{If}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{Riemann}\:\mathrm{integrable}\:\mathrm{on}\:\left[{a},{b}\right]\:\mathrm{and} \\ $$$$\:\:\:\:\:\exists{M}>\mathrm{0}\:{s}.{t}.\:\forall{x}\in\left[{a},{b}\right]\:\left({f}\left({x}\right)\neq\mathrm{0}\:{and}\:\mid{f}\left({x}\right)\mid<{M}\:{and}\:\mid\frac{\mathrm{1}}{{f}\left({x}\right)}\mid<{M}\right), \\ $$$$\mathrm{then}\:\frac{\mathrm{1}}{{f}\left({x}\right)}\:\mathrm{is}\:\mathrm{Riemann}\:\mathrm{integrable}\:\mathrm{on}\:\left[{a},{b}\right]. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 157207 by samer12 last updated on 21/Oct/21 $$\mathrm{sin}\:\mathrm{ln}{xdx} \\ $$ Commented by puissant last updated on 21/Oct/21 $${Q}\mathrm{156695} \\ $$ Terms of Service…
Question Number 91668 by M±th+et+s last updated on 02/May/20 $$\int{e}^{{x}^{\mathrm{2}} } \:{erf}\left({x}\right)\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 26125 by offrinshingal last updated on 20/Dec/17 Commented by abdo imad last updated on 21/Dec/17 $$\int_{{R}} \frac{{x}\:{e}^{{irx}} }{\left({x}^{\mathrm{2}} −{k}^{\mathrm{2}} \right)}{dx}\:−\:\int_{{R}} \:\frac{{x}\:{e}^{−{irx}} }{\left({x}^{\mathrm{2}} −\:{k}^{\mathrm{2}}…