Menu Close

Category: Integration

Slove-xtanx-dx-

Question Number 22261 by tapan das last updated on 14/Oct/17 $$\mathrm{Slove} \\ $$$$\int\mathrm{xtanx}\:\mathrm{dx} \\ $$ Answered by scottfeed last updated on 13/Nov/17 $${using}\:{integration}\:{by}\:{part}\:{formula}\:{to}\:{solve} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\int{udv}={uv}−\int{vdu}…

show-that-e-sin-x-dx-n-0-1-n-cos-x-sin-x-n-1-sin-x-2-n-2-1-2-2F-1-1-2-1-n-2-3-2-cos-x-2-c-notice-2F-1-is-special-function-called-hyperge

Question Number 87793 by M±th+et£s last updated on 06/Apr/20 $${show}\:{that} \\ $$$$\int{e}^{{sin}\left({x}\right)} \:{dx}= \\ $$$$−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\left[\:{cos}\left({x}\right)\ast\left({sin}\left({x}\right)\right)^{{n}+\mathrm{1}} \ast\left[\left({sin}\left({x}\right)\right)^{\mathrm{2}} \right]^{\left(\frac{−{n}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)} \ast\:\mathrm{2}{F}_{\mathrm{1}} \left[\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}−{n}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};\left({cos}\left({x}\right)\right)^{\mathrm{2}} \right]\:\right]+{c} \\ $$$$ \\…

a-b-x-a-b-x-dx-

Question Number 87757 by john santu last updated on 06/Apr/20 $$\int_{\mathrm{a}} ^{\mathrm{b}} \:\frac{\sqrt{\mathrm{x}−\mathrm{a}}}{\:\sqrt{\mathrm{b}−\mathrm{x}}}\:\mathrm{dx}\:=?\: \\ $$ Commented by john santu last updated on 06/Apr/20 $$\left.\mathrm{let}\:\mathrm{x}\:=\:\mathrm{a}\:+\:\left(\mathrm{b}−\mathrm{a}\right)\:\mathrm{w}\:\right] \\…

4x-e-3x-dx-

Question Number 22210 by cmaxamuud98 @gmail.com last updated on 13/Oct/17 $$\int\frac{\mathrm{4}{x}}{{e}^{\mathrm{3}{x}} }{dx} \\ $$ Answered by ajfour last updated on 13/Oct/17 $$=\mathrm{4}\int{xe}^{−\mathrm{3}{x}} {dx} \\ $$$$=\mathrm{4}\left\{{x}\int{e}^{−\mathrm{3}{x}}…

Question-87716

Question Number 87716 by Power last updated on 05/Apr/20 Commented by malwaan last updated on 05/Apr/20 $${put}\:{x}=\mathrm{2}{sin}\:{y}\:\Rightarrow\:{dx}=\mathrm{2}{cosydy} \\ $$$$\mathrm{3}{x}−{x}^{\mathrm{3}} \:=\:\mathrm{2}{sin}\mathrm{3}{y} \\ $$$$\therefore\:\int\:^{\mathrm{3}} \sqrt{\mathrm{2}{sin}\mathrm{3}{y}}\:.\:\mathrm{2}{cosy}\:{dy}\:=\:?? \\ $$…