Menu Close

Category: Integration

e-give-a-element-from-0-find-the-value-of-0-cos-ax-2-and-0-sin-ax-2-dx-

Question Number 26024 by abdo imad last updated on 17/Dec/17 $$\left.{e}\:{give}\:{a}\:{element}\:{from}\right]\mathrm{0}.\propto\left[\:\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left(\:{ax}^{\mathrm{2}} \right)\right. \\ $$$${and}\:\:\int_{\mathrm{0}} ^{\infty} \:{sin}\left(\:{ax}^{\mathrm{2}} \right){dx}. \\ $$ Terms of Service Privacy…

answer-to-question25980-key-of-slution-we-develop-the-foction-f-x-sin-px-at-fourier-serie-f-2pi-periodic-f-x-n-1-n-a-n-sin-nx-and-a-n-2-T-T-sin-px-sin-nx-dx-T-2pi-a-n

Question Number 26023 by abdo imad last updated on 17/Dec/17 $${answer}\:{to}\:{question}\mathrm{25980}\:{key}\:{of}\:{slution}\:{we}\:{develop}\:\:{the} \\ $$$${foction}\:{f}\left({x}\right)\:=\:{sin}\left({px}\right)\:{at}\:{fourier}\:{serie}\left(\left({f}\:\mathrm{2}\pi\:{periodic}\right)\right. \\ $$$${f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{{n}=\propto} \:{a}_{{n}} {sin}\left({nx}\right)\:{and}\:\:{a}_{{n}} =\:\mathrm{2}/{T}\:\int_{\left[{T}\right]} {sin}\left({px}\right){sin}\left({nx}\right){dx}\:\:\:\left({T}=\mathrm{2}\pi\right) \\ $$$$ \\ $$$$ \\…

x-3-2x-1-dx-

Question Number 91542 by jagoll last updated on 01/May/20 $$\int\:\frac{{x}^{\mathrm{3}} }{\mathrm{2}{x}+\mathrm{1}}\:{dx}\:=\:? \\ $$ Commented by Prithwish Sen 1 last updated on 01/May/20 $$\mathrm{put}\:\mathrm{2x}+\mathrm{1}=\frac{\mathrm{1}}{\mathrm{t}}\:\Rightarrow\:\mathrm{dx}\:=\:−\frac{\mathrm{dt}}{\mathrm{2t}^{\mathrm{2}} } \\…

answer-to-25955-we-introduce-the-parametric-function-F-t-0-ln-1-1-x-2-t-1-x-2-1-dx-after-verifying-that-F-is-derivable-on-0-we-find-F-t-0-1-1-x-2-t-1-dx-F-

Question Number 25960 by abdo imad last updated on 16/Dec/17 $${answer}\:{to}\:\mathrm{25955}.{we}\:{introduce}\:{the}\:{parametric}\:{function} \\ $$$${F}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{ln}\left(\mathrm{1}+\left(\mathrm{1}+{x}^{\mathrm{2}_{} } \right){t}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}\:{after}\:{verifying}\:{that}\: \\ $$$${F}\:{is}\:{derivable}\:{on}\left[\mathrm{0}.\propto\left[\:\:{we}\:{find}\:\:\:\partial{F}/\partial{t}=\:\:\int_{\mathrm{0}} ^{\infty} \left(\:\left(\mathrm{1}+\left(\mathrm{1}+{x}^{\mathrm{2}} \right){t}\right)^{−\mathrm{1}} {dx}\right.\right.\right.…

find-the-value-of-0-ln-2-x-2-1-x-2-1-dx-

Question Number 25955 by abdo imad last updated on 16/Dec/17 $$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\int_{\mathrm{0}} ^{\infty} \:\:\boldsymbol{\mathrm{ln}}\left(\mathrm{2}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)\left(\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)^{−\mathrm{1}} \boldsymbol{\mathrm{dx}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

f-x-1-1-2-x-1-1-3-x-1-4-x-1-find-1-5-f-x-dx-5-1-f-x-dx-

Question Number 157016 by amin96 last updated on 18/Oct/21 $${f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}^{{x}} }+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{3}^{{x}} }+\frac{\mathrm{1}}{\mathrm{4}^{{x}} +\mathrm{1}}\:\: \\ $$$${find}\:\:\:\int_{\mathrm{1}} ^{\mathrm{5}} {f}\left({x}\right){dx}+\int_{−\mathrm{5}} ^{−\mathrm{1}} {f}\left({x}\right){dx} \\ $$ Answered by amin96 last…