Menu Close

Category: Integration

0-1-log-1-x-1-x-2-dx-

Question Number 153114 by peter frank last updated on 04/Sep/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{log}\:\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$ Answered by puissant last updated on 04/Sep/21 $${x}={tan}\left({u}\right)\:\rightarrow\:{dx}=\mathrm{1}+{tan}^{\mathrm{2}} {udu}…

Question-87556

Question Number 87556 by M±th+et£s last updated on 05/Apr/20 Commented by jagoll last updated on 05/Apr/20 $$\mathrm{x}^{\mathrm{3}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{7x}−\mathrm{1}\:=\:\mathrm{a}\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} + \\ $$$$\mathrm{b}\left(\mathrm{x}−\mathrm{3}\right)\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} +\mathrm{c}\left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{2}} \left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} +…

Question-87538

Question Number 87538 by Power last updated on 04/Apr/20 Commented by mathmax by abdo last updated on 04/Apr/20 $${I}\:=\int_{−\mathrm{1}} ^{\mathrm{1}} \:{f}^{−\mathrm{1}} \left({x}\right){dx}\:\:\:{changement}\:{f}^{−\mathrm{1}} \left({x}\right)={t}\:{give}\:{x}\:={f}\left({t}\right)\Rightarrow \\ $$$${dx}\:={f}^{'}…

Question-87540

Question Number 87540 by Power last updated on 04/Apr/20 Commented by abdomathmax last updated on 05/Apr/20 $${let}\:\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} }\:{changement}\:{x}\:={sh}\left({t}\right)\:{give} \\ $$$${I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ch}\left({t}\right)\:{dt}}{\left({sh}\left({t}\right)+{cht}\right)^{\mathrm{2}}…