Menu Close

Category: Integration

nice-calculus-evaluate-k-0-m-0-n-0-1-k-m-n-

Question Number 129926 by mnjuly1970 last updated on 20/Jan/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:\:{calculus}… \\ $$$$\:\:{evaluate}: \\ $$$$\:\:\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\underset{{m}=\mathrm{0}} {\overset{\infty} {\sum}}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\left({k}+{m}+{n}\right)!}\right)=? \\ $$$$ \\ $$ Answered…

1-calculate-A-n-0-sin-x-2n-x-2-1-2-dx-with-n-integr-natural-2-study-the-convergene-of-A-n-

Question Number 64392 by mathmax by abdo last updated on 17/Jul/19 $$\left.\mathrm{1}\right){calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}\left({x}^{\mathrm{2}{n}} \right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:\:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{convergene}\:{of}\:\Sigma\:{A}_{{n}} \\ $$ Commented by mathmax…

dx-sin-3-xcos-5-x-

Question Number 129907 by pticantor last updated on 20/Jan/21 $$\int\frac{\boldsymbol{{dx}}}{\boldsymbol{{sin}}^{\mathrm{3}} \boldsymbol{{xcos}}^{\mathrm{5}} \boldsymbol{{x}}}=??????? \\ $$ Answered by Ar Brandon last updated on 20/Jan/21 $$\mathcal{I}=\int\frac{\mathrm{dx}}{\mathrm{sin}^{\mathrm{3}} \mathrm{xcos}^{\mathrm{5}} \mathrm{x}}=\int\frac{\mathrm{cos}^{\mathrm{2}}…

calculate-2x-1-x-2-x-1-3-dx-

Question Number 129867 by Bird last updated on 20/Jan/21 $${calculate}\:\int\:\:\:\frac{\mathrm{2}{x}−\mathrm{1}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx} \\ $$ Answered by Olaf last updated on 20/Jan/21 $$\Omega\:=\:\int\frac{\mathrm{2}{x}−\mathrm{1}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx}\:=\:\int\frac{{du}}{{u}^{\mathrm{3}} }…

L-1-0-1-y-1-y-dy-

Question Number 129859 by EDWIN88 last updated on 20/Jan/21 $$\:\mathrm{L}\:=\:\int_{−\mathrm{1}} ^{\:\mathrm{0}} \sqrt{\frac{\mathrm{1}+\mathrm{y}}{\mathrm{1}−\mathrm{y}}}\:\mathrm{dy}\: \\ $$ Answered by liberty last updated on 20/Jan/21 $$\:\mathrm{let}\:\mathrm{y}=\mathrm{cos}\:\mathrm{2t}\:\rightarrow\begin{cases}{\mathrm{y}=\mathrm{0}\rightarrow\mathrm{t}=\frac{\pi}{\mathrm{4}}}\\{\mathrm{y}=−\mathrm{1}\rightarrow\mathrm{t}=\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{L}\:=\int_{\pi/\mathrm{2}} ^{\:\pi/\mathrm{4}}…