Question Number 156577 by Ar Brandon last updated on 12/Oct/21 Commented by TheHoneyCat last updated on 14/Oct/21 Partie 1: Commented by TheHoneyCat last updated on 14/Oct/21…
Question Number 156578 by Ar Brandon last updated on 12/Oct/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 91037 by M±th+et+s last updated on 27/Apr/20 $${hi}\:{every}\:{one} \\ $$$${what}\:{is}\:{the}\:{scientific}\:{reason}\:{for}\:{using} \\ $$$${trigonometric}\:{compensation}\: \\ $$$${in}\:{integration}? \\ $$$${and}\:{what}\:{is}\:{the}\:{rule}\:{that}\:{we}\:{rely}\:{on} \\ $$$${in}\:{other}\:{compensation}? \\ $$$$ \\ $$$$\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}}…
Question Number 91018 by M±th+et+s last updated on 27/Apr/20 $$\int_{\mathrm{0}} ^{\pi} \frac{{sin}\frac{\mathrm{21}{x}}{\mathrm{2}}}{{sin}\frac{{x}}{\mathrm{2}}}{dx} \\ $$ Commented by mathmax by abdo last updated on 29/Apr/20 $${let}\:{take}\:{atry}\:\:{changement}\:\frac{{x}}{\mathrm{2}}\:={t}\:{give} \\…
Question Number 25475 by abdo imad last updated on 10/Dec/17 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 25474 by abdo imad last updated on 10/Dec/17 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 91004 by jagoll last updated on 27/Apr/20 $$\int\:\mathrm{tan}\:\left({arc}\:\mathrm{sin}\:{x}\right)\:{dx} \\ $$ Commented by jagoll last updated on 27/Apr/20 $${let}\:\mathrm{sin}^{−\mathrm{1}} \left({x}\right)\:=\:{y}\:\Rightarrow{x}\:=\:\mathrm{sin}\:{y} \\ $$$${dx}\:=\:\mathrm{cos}\:{y}\:{dy}\: \\ $$$$\mathrm{tan}\:\left(\mathrm{sin}^{−\mathrm{1}}…
Question Number 25468 by abdo imad last updated on 10/Dec/17 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 156529 by mnjuly1970 last updated on 12/Oct/21 Answered by mr W last updated on 12/Oct/21 $${f}\left(+\infty\right)\rightarrow+\infty \\ $$$${f}\left(−\infty\right)\rightarrow+\infty \\ $$$$ \\ $$$${f}'\left({x}\right)=\mathrm{4}{x}^{\mathrm{3}} +\mathrm{6}{x}^{\mathrm{2}}…
Question Number 90997 by jagoll last updated on 27/Apr/20 $$\int\underset{\mathrm{0}} {\overset{\pi} {\:}}\:\frac{\mathrm{sin}\:{x}\:{dx}}{\mathrm{1}+\mathrm{sin}\:{x}} \\ $$ Commented by john santu last updated on 27/Apr/20 Commented by jagoll…