Question Number 21390 by Joel577 last updated on 22/Sep/17 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\frac{{x}^{\mathrm{7}} \:−\:\mathrm{1}}{\mathrm{ln}\:{x}}\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 86914 by Chi Mes Try last updated on 01/Apr/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 86915 by Chi Mes Try last updated on 01/Apr/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 86871 by john santu last updated on 01/Apr/20 $$\int\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{4}} +\mathrm{1}\right)^{\mathrm{3}} } \\ $$ Commented by mathmax by abdo last updated on 01/Apr/20 $${complex}\:{method}\:{I}\:=\int\:\:\frac{{dx}}{\left({x}^{\mathrm{4}}…
Question Number 86853 by M±th+et£s last updated on 01/Apr/20 $$\int\frac{{x}^{\mathrm{6}} −{x}^{\mathrm{3}} +\mathrm{2}}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} −\mathrm{2}}{dx} \\ $$ Answered by MJS last updated on 01/Apr/20 $$\frac{{x}^{\mathrm{6}} −{x}^{\mathrm{3}}…
Question Number 86850 by john santu last updated on 01/Apr/20 $$\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:\left(\sqrt[{\mathrm{4}\:\:}]{\left(\mathrm{x}^{\mathrm{4}} +\mathrm{1}\right)}\right)^{\mathrm{3}} } \\ $$ Commented by john santu last updated on 01/Apr/20 Answered…
Question Number 86845 by M±th+et£s last updated on 31/Mar/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 86830 by Ar Brandon last updated on 31/Mar/20 $${Prove}\:\:{that}\:\int_{\mathrm{0}} ^{\infty} \frac{{sin}\:{x}}{{x}}{dx}\:=\:\frac{\pi}{\mathrm{2}} \\ $$ Answered by mind is power last updated on 31/Mar/20 $${let}\:{f}\left({z}\right)=\frac{{e}^{{iz}}…
Question Number 86824 by Ar Brandon last updated on 31/Mar/20 $$\int\frac{{x}^{\mathrm{6}} +{x}^{\mathrm{2}} }{{x}^{\mathrm{8}} −{x}^{\mathrm{4}} +\mathrm{1}}{dx} \\ $$ Answered by TANMAY PANACEA. last updated on 31/Mar/20…
Question Number 152345 by mnjuly1970 last updated on 27/Aug/21 $$ \\ $$$$\:\:\:\:{prove}… \\ $$$$\:\:\:\:\:\mathrm{S}\:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:+\frac{\mathrm{2}\pi\:\sqrt{\mathrm{3}}}{\mathrm{27}}\:…\blacksquare \\ $$$$ \\ $$ Answered by Kamel last updated…