Question Number 130137 by mathmax by abdo last updated on 22/Jan/21 $$\mathrm{calculate}\:\mathrm{for}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{natural}\:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\mathrm{1}+\mathrm{x}^{\mathrm{n}} }\mathrm{dx}\:\:\:\left(\mathrm{n}\geqslant\mathrm{2}\right) \\ $$ Answered by Dwaipayan Shikari last updated on…
Question Number 130132 by bait last updated on 22/Jan/21 $${solve}\:\int\int_{{G}} \left(\mathrm{7}{x}−{y}\right){dxdy},\:{where}\:{G}\:{is}\:{given}\:{by}\:{y}=\mathrm{0} \\ $$$${x}+\mathrm{2}{y}=\mathrm{3},\:{x}={y}^{\mathrm{2}} \\ $$$$ \\ $$$${i}\:{want}\:{to}\:{know}\:{if}\:{the}\:{integral}\:{below}\:{is}\:{a}\:{correct} \\ $$$${representation}\:{of}\:{the}\:{integral}\:{above}. \\ $$$$\:\left(\underset{\mathrm{0}} {\overset{\frac{\mathrm{3}}{\mathrm{2}}} {\int}}\underset{\mathrm{0}} {\overset{\frac{\mathrm{9}}{\mathrm{4}}} {\int}}\left(\mathrm{7}{x}−{y}\right){dxdy}\right).…
Question Number 130135 by mathmax by abdo last updated on 22/Jan/21 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{6}} }\mathrm{dx} \\ $$ Answered by Dwaipayan Shikari last updated on 22/Jan/21…
Question Number 130133 by talminator2856791 last updated on 22/Jan/21 $$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{solve}\:\mathrm{for}\:{x} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:{x}} \underset{{m}=\mathrm{0}} {\overset{\lceil{x}\rceil} {\sum}}{x}^{\mathrm{ln}\:{m}+\mathrm{1}} \:{dx}\:=\:{x}^{\mathrm{2}} \:,\: \\…
Question Number 64579 by Tawa1 last updated on 19/Jul/19 $$\int\:\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \:\mathrm{dx} \\ $$$$ \\ $$$$\mathrm{can}\:\mathrm{we}\:\mathrm{get}\:\mathrm{a}\:\mathrm{close}\:\mathrm{form}\:\mathrm{of}\:\mathrm{this}\:\mathrm{integral}\:\mathrm{or}\:\mathrm{analytic}\:\mathrm{solution} \\ $$ Commented by mathmax by abdo last updated…
Question Number 64559 by aliesam last updated on 19/Jul/19 Commented by mathmax by abdo last updated on 20/Jul/19 $${let}\:{I}\:=\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \sqrt{\frac{\mathrm{1}−\left({lnx}\right)^{\mathrm{2}} }{{x}}}{dx}\:\Rightarrow{I}\:=\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \sqrt{\mathrm{1}−\left({lnx}\right)^{\mathrm{2}} }\frac{{dx}}{\:\sqrt{{x}}}…
Question Number 64541 by Chi Mes Try last updated on 19/Jul/19 $${lol}….{QUESTION}\:{OF}\:\:{THE}\:{DAY} \\ $$$$ \\ $$$${SHOW}\:{FULL}\:{WORKINGS} \\ $$$$ \\ $$$$\int{x}\left(\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right){Ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)−\left(\mathrm{1}−{x}^{\mathrm{2}} \right){Ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\left(\mathrm{1}−{x}^{\mathrm{4}}…
Question Number 64529 by mathmax by abdo last updated on 19/Jul/19 $${calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{{dx}}{\:\sqrt{{x}}}\:\:\:{by}\:{Rieman}\:{sum}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 64528 by mathmax by abdo last updated on 19/Jul/19 $${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{−{x}} {dx}\:\:\:{study}\:{first}\:{the}\:{convergence}. \\ $$ Commented by mathmax by abdo last updated on…
Question Number 64525 by mathmax by abdo last updated on 19/Jul/19 $${study}\:{the}\:{convergence}\:{of}\:\Sigma\:{U}_{{n}} \:\:\:{with} \\ $$$${U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({nx}\right)}{{x}^{\mathrm{2}} \:+{n}^{\mathrm{2}} }{dx}\:\:\:\left({n}\geqslant\mathrm{1}\right) \\ $$ Commented by mathmax…