Question Number 90040 by abdomathmax last updated on 21/Apr/20 $${find}\:\:\int_{−\infty} ^{+\infty} \:\:\frac{{ch}\left({acosx}\:+{bsinx}\right)}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}{dx} \\ $$$${a}\:{and}\:{b}\:{reals}\:{given} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 90043 by abdomathmax last updated on 21/Apr/20 $${calculate}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({ax}\right)}{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx}\:{with}\:{a}>\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 90041 by abdomathmax last updated on 21/Apr/20 $${calculste}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xarctan}\left(\mathrm{2}{x}\right)}{\mathrm{9}+\mathrm{2}{x}^{\mathrm{2}} }{dx}\: \\ $$ Answered by mathmax by abdo last updated on 23/Apr/20 $${sorry}\:{Q}\:{is}\:\int_{\mathrm{0}}…
Question Number 155553 by talminator2856791 last updated on 02/Oct/21 $$\: \\ $$$$\int_{−\infty} ^{\:\infty} \:\frac{\mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left({x}^{\mathrm{3}} \right)}{\left(\mathrm{ln}\left(\left(\mathrm{sin}\left({x}\right)\mathrm{cos}\left({x}\right)\right)^{\mathrm{2}} \right)\right)^{\mathrm{2}} +\mathrm{1}}\:\:{dx}\:\: \\ $$$$\: \\ $$ Terms of Service…
Question Number 90003 by M±th+et£s last updated on 20/Apr/20 $${show}\:{that} \\ $$$$\int_{−\infty} ^{\infty} \frac{{dx}}{\mathrm{1}+\left({x}+{tan}\left({x}\right)\right)^{\mathrm{2}\:} }=\pi \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 155533 by mnjuly1970 last updated on 01/Oct/21 $$ \\ $$$$\:\:\:{coefficiient}\:{of}\:\:\:\:{x}^{\:\mathrm{60}} \:=\:? \\ $$$$ \\ $$$$\:\:\:\mathrm{P}\:=\:\left({x}−\mathrm{1}\right)\left({x}^{\:\mathrm{2}} −\mathrm{1}\right)\left({x}^{\:\mathrm{3}} −\mathrm{1}\right)…\left({x}^{\:\mathrm{15}} −\mathrm{1}\right) \\ $$$$ \\ $$ Answered…
Question Number 89946 by jagoll last updated on 20/Apr/20 $$\int\underset{−\frac{\pi}{\mathrm{2}}} {\overset{\frac{\pi}{\mathrm{2}}} {\:}}\:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{e}^{\mathrm{sin}\:\mathrm{x}} } \\ $$ Answered by john santu last updated on 20/Apr/20 $${I}\:=\:\underset{\frac{−\pi}{\mathrm{2}}} {\overset{\frac{\pi}{\mathrm{2}}}…
Question Number 24411 by A1B1C1D1 last updated on 17/Nov/17 Answered by mrW1 last updated on 17/Nov/17 $$\int_{\frac{\pi}{\mathrm{2}}} ^{\:\mathrm{0}} \int_{\mathrm{2}} ^{\:\mathrm{0}} {r}^{\mathrm{4}} \mathrm{cos}\:\left(\mathrm{2}\theta\right)\:{dr}\:{d}\theta \\ $$$$=\int_{\frac{\pi}{\mathrm{2}}} ^{\:\mathrm{0}}…
Question Number 89918 by jagoll last updated on 20/Apr/20 $$\int\:\frac{\mathrm{x}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\:\mathrm{dx}\: \\ $$ Commented by john santu last updated on 20/Apr/20 $$\left[\:{u}\:=\:\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\:\Rightarrow{du}\:=\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}}…
Question Number 24363 by gopikrishnan005@gmail.com last updated on 16/Nov/17 $$\int\left({ae}\right)^{{x}} {dx} \\ $$ Answered by ajfour last updated on 16/Nov/17 $$=\frac{\left({ae}\right)^{{x}} }{\mathrm{1}+\mathrm{ln}\:{a}}+{C}\:. \\ $$ Commented…