Menu Close

Category: Integration

Question-64559

Question Number 64559 by aliesam last updated on 19/Jul/19 Commented by mathmax by abdo last updated on 20/Jul/19 $${let}\:{I}\:=\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \sqrt{\frac{\mathrm{1}−\left({lnx}\right)^{\mathrm{2}} }{{x}}}{dx}\:\Rightarrow{I}\:=\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \sqrt{\mathrm{1}−\left({lnx}\right)^{\mathrm{2}} }\frac{{dx}}{\:\sqrt{{x}}}…

lol-QUESTION-OF-THE-DAY-SHOW-FULL-WORKINGS-x-1-x-2-Ln-1-x-2-1-x-2-1-x-2-Ln-1-x-2-1-x-4-1-x-2-e-x-2-1-x-2-1-dx-

Question Number 64541 by Chi Mes Try last updated on 19/Jul/19 $${lol}….{QUESTION}\:{OF}\:\:{THE}\:{DAY} \\ $$$$ \\ $$$${SHOW}\:{FULL}\:{WORKINGS} \\ $$$$ \\ $$$$\int{x}\left(\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right){Ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)−\left(\mathrm{1}−{x}^{\mathrm{2}} \right){Ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\left(\mathrm{1}−{x}^{\mathrm{4}}…

1-decompose-F-x-1-x-2-4-3-x-2-1-2-2-find-3-dx-x-2-4-3-x-2-1-2-

Question Number 130029 by mathmax by abdo last updated on 22/Jan/21 $$\left.\mathrm{1}\right)\:\mathrm{decompose}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{3}} \left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\int_{\mathrm{3}} ^{\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{3}} \left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\…

pls-i-need-it-urgently-am-stuck-workings-please-1-Ln-1-Lnx-dx-2-1-Lnx-dx-3-Ln-2Lnx-dx-God-will-honour-u-4-ur-replies-

Question Number 64477 by Chi Mes Try last updated on 18/Jul/19 $${pls}\:\:{i}\:{need}\:{it}\:{urgently}…\:{am}\:{stuck} \\ $$$${workings}\:{please} \\ $$$$\left(\mathrm{1}\right)\:\:\int{Ln}\left(\mathrm{1}−{Lnx}\right){dx} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\:\int\frac{\mathrm{1}}{{Lnx}}{dx} \\ $$$$ \\ $$$$\left(\mathrm{3}\right)\int\:{Ln}\left(−\mathrm{2}{Lnx}\right){dx} \\…

advanced-calculus-prove-that-R-e-e-x-2x-x-2-dx-1-2-pi-2-6-6-

Question Number 130011 by mnjuly1970 last updated on 21/Jan/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{advanced}\:\:{calculus}… \\ $$$$\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\Phi=\underset{\:\:\:\:\:\mathbb{R}} {\int}{e}^{\left(−{e}^{{x}} +\mathrm{2}{x}\right)} {x}^{\mathrm{2}} {dx}=\left(\mathrm{1}−\gamma\right)^{\mathrm{2}} +\frac{\pi^{\mathrm{2}} −\mathrm{6}}{\mathrm{6}} \\ $$$$ \\ $$ Answered…

sec-x-dx-

Question Number 64463 by aliesam last updated on 18/Jul/19 $$\int\sqrt{{sec}\left({x}\right)}\:{dx} \\ $$ Commented by Tony Lin last updated on 18/Jul/19 $$\int\sqrt{{secx}}{dx} \\ $$$$=\int\frac{{dx}}{\:\sqrt{{cosx}}}\: \\ $$$$=\int\frac{{dx}}{\:\sqrt{\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}}…