Menu Close

Category: Integration

cos-y-3-dy-

Question Number 129519 by BHOOPENDRA last updated on 16/Jan/21 $$\int\:{cos}\:\left({y}^{\mathrm{3}} \right){dy} \\ $$ Answered by Dwaipayan Shikari last updated on 16/Jan/21 $$\int{cos}\left({y}^{\mathrm{3}} \right){dy} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int{e}^{{iy}^{\mathrm{3}}…

secxdx-

Question Number 63976 by Scientist0000001 last updated on 11/Jul/19 $$\int{secxdx}\:\:\:\:? \\ $$ Commented by Prithwish sen last updated on 12/Jul/19 $$\int\frac{\mathrm{sec}^{\mathrm{2}} \frac{\mathrm{x}}{\mathrm{2}}}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \frac{\mathrm{x}}{\mathrm{2}}}\mathrm{dx}\:\:\:\:\mathrm{putting}\:\mathrm{tan}\frac{\mathrm{x}}{\mathrm{2}}\:=\:\mathrm{t} \\ $$$$\mathrm{sec}^{\mathrm{2}}…

calculate-A-0-x-2017-1-x-2019-dx-and-B-0-x-2019-1-x-2021-dx-calculate-the-fraction-A-B-

Question Number 63892 by mathmax by abdo last updated on 10/Jul/19 $${calculate}\:{A}=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{2017}} }{\mathrm{1}+{x}^{\mathrm{2019}} }\:{dx}\:\:{and}\:{B}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{2019}} }{\mathrm{1}+{x}^{\mathrm{2021}} }\:{dx} \\ $$$${calculate}\:{the}\:{fraction}\:\frac{{A}}{{B}} \\ $$ Commented…

ln-x-ln-1-x-ln-1-2x-dx-

Question Number 63883 by mmkkmm000m last updated on 10/Jul/19 $$\int{ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}−\mathrm{2}{x}\right){dx} \\ $$ Commented by mathmax by abdo last updated on 12/Jul/19 $${let}\:{A}\:=\int\:{ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}−\mathrm{2}{x}\right)\:{dx}\:\:{we}\:{have} \\ $$$${ln}^{'} \left(\mathrm{1}−{u}\right)\:=−\frac{\mathrm{1}}{\mathrm{1}−{u}}\:=−\sum_{{n}=\mathrm{0}}…

prove-that-0-1-arctan-x-cot-pix-2-dx-3-ln-2-2-2pi-lnpi-ln2-pi-0-ln-1-x-2-e-2pix-1-dx-

Question Number 63852 by aliesam last updated on 10/Jul/19 $${prove}\:{that} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({x}\right)\:{cot}\left(\frac{\pi{x}}{\mathrm{2}}\right)\:{dx}\:=\:\frac{\mathrm{3}\:{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}\pi}+\frac{{ln}\pi\:{ln}\mathrm{2}}{\pi}+\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{e}^{\mathrm{2}\pi{x}} +\mathrm{1}}\:{dx} \\ $$ Terms of…