Question Number 154872 by talminator2856791 last updated on 22/Sep/21 $$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \mathrm{sin}\left({x}^{\mathrm{3}} \right)\mathrm{cos}\left({x}^{\mathrm{4}} \right){dx} \\ $$$$\: \\ $$ Answered by mnjuly1970 last updated…
Question Number 154857 by CAIMAN last updated on 22/Sep/21 Answered by mindispower last updated on 23/Sep/21 $${ln}\left({ch}\left(\right)+{cos}\left(…..\right)\right){dx}? \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 89322 by I want to learn more last updated on 16/Apr/20 $$\int\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{1}\:+\:\mathrm{5}^{\mathrm{x}} }\:\mathrm{dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 89318 by M±th+et£s last updated on 16/Apr/20 $$\int\frac{{dx}}{{sin}^{\mathrm{3}} \left(\mathrm{2}{x}\right)+{cos}^{\mathrm{3}} \left(\mathrm{2}{x}\right)} \\ $$ Answered by MJS last updated on 16/Apr/20 $$\int\frac{{dx}}{\mathrm{sin}^{\mathrm{3}} \:\mathrm{2}{x}\:+\mathrm{cos}^{\mathrm{3}} \:\mathrm{2}{x}}= \\…
Question Number 89317 by abdomathmax last updated on 16/Apr/20 $${find}\:\int\:\:\:\:\:\frac{{dx}}{\left({x}+\sqrt{{x}−\mathrm{1}}\right)^{\mathrm{2}} } \\ $$ Commented by mathmax by abdo last updated on 17/Apr/20 $${parametric}\:{method}\:{let}\:{f}\left({a}\right)\:=\int\:\frac{{dx}}{{a}+{x}+\sqrt{{x}−\mathrm{1}}} \\ $$$${we}\:{have}\:{f}^{'}…
Question Number 89314 by abdomathmax last updated on 16/Apr/20 $${calculate}\:\int\int_{{D}} \:{x}^{\mathrm{2}} \sqrt{{x}+{y}}{dxdy}\:{with}\:{D}\:{is}\:{the}\:{triangle} \\ $$$$\mathrm{0}\:{A}\:{B}\:\:\:\left(\mathrm{0}\:{origin}\right)\:\:\:{A}\left(\mathrm{1},\mathrm{0}\right)\:\:\:{B}\left(\mathrm{0},\mathrm{1}\right) \\ $$ Commented by abdomathmax last updated on 18/Apr/20 $${the}\:{equation}\:{of}\:{line}\:\left({AB}\right)\:{is}\:{x}+{y}=\mathrm{1}\:\Rightarrow{y}=\mathrm{1}−{x}\:\Rightarrow \\…
Question Number 89315 by abdomathmax last updated on 16/Apr/20 $${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\frac{{arctan}\left({xy}\right)}{\left({x}+{y}\right)^{\mathrm{2}} }{dxdy} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 89312 by abdomathmax last updated on 16/Apr/20 $${calculate}\:\int\int_{{D}} \:{xe}^{−{x}} {siny}\:{dy}\:{with}\:{D}\:{is}\:{the}\:{triangle} \\ $$$${OAB}\:\:\:\:{O}\left(\mathrm{0},\mathrm{0}\right)\:\:{A}\left(\mathrm{1},\mathrm{0}\right)\:{B}\left(\mathrm{0},\mathrm{1}\right) \\ $$ Commented by mathmax by abdo last updated on 17/Apr/20…
Question Number 89311 by nimnim last updated on 16/Apr/20 $$\:\:{Show}\:{that} \\ $$$$\underset{\:\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\mathrm{1}} {\int}}\left\{\underset{\:\:\:\:\mathrm{0}} {\overset{\:\:\:\mathrm{1}} {\int}}\frac{{x}−{y}}{\left({x}+{y}\right)^{\mathrm{2}} }{dy}\right\}{dx}=\underset{\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\mathrm{1}} {\int}}\left\{\underset{\:\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\mathrm{1}} {\int}}\frac{{x}−{y}}{\left({x}+{y}\right)^{\mathrm{2}} }{dx}\right\}{dy} \\ $$$$ \\…
Question Number 89306 by Chi Mes Try last updated on 16/Apr/20 Terms of Service Privacy Policy Contact: info@tinkutara.com