Question Number 21591 by Isse last updated on 29/Sep/17
Question Number 87121 by M±th+et£s last updated on 03/Apr/20
Question Number 21582 by Isse last updated on 28/Sep/17
Question Number 87103 by hamdhan last updated on 02/Apr/20
Question Number 87086 by Chi Mes Try last updated on 02/Apr/20 Answered by mind is power last updated on 03/Apr/20 $$=\int_{\mathrm{0}} ^{+\infty} \mathrm{2}\frac{{dt}}{\left({t}^{\mathrm{4}} +\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}\right){t}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{1}−{t}^{\mathrm{2}}…
Question Number 87052 by lémùst last updated on 02/Apr/20
Question Number 87048 by Ar Brandon last updated on 02/Apr/20
Question Number 152580 by aupo14 last updated on 29/Aug/21 Answered by Lordose last updated on 29/Aug/21 $$\mathrm{I}\:=\:\int\mathrm{e}^{\mathrm{sec}^{\mathrm{2}} \left(\mathrm{x}\right)} \mathrm{tan}\left(\mathrm{x}\right)\mathrm{dx}\:\overset{\mathrm{u}=\mathrm{sec}\left(\mathrm{x}\right)} {=}\int\frac{\:\mathrm{e}^{\mathrm{u}^{\mathrm{2}} } }{\mathrm{u}}\mathrm{du}\:\overset{\mathrm{y}=\mathrm{u}^{\mathrm{2}} } {=}\:\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\:\mathrm{e}^{\mathrm{y}} }{\mathrm{y}}\mathrm{dy}…
Question Number 87046 by Tajaddin last updated on 02/Apr/20
Question Number 152576 by Tawa11 last updated on 31/Aug/21