Question Number 88930 by mathmax by abdo last updated on 13/Apr/20 $${find}\:{A}_{\lambda} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\lambda{x}\right)}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:{with}\:\lambda>\mathrm{0} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\mathrm{3}{x}\right)}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$…
Question Number 23393 by ajfour last updated on 29/Oct/17 $${Show}\:{that}\:{volume}\:{of}\:{a}\:{region} \\ $$$${of}\:{space}\:{bounded}\:{by}\:{a}\:{boundary} \\ $$$${surface}\:{S}\:{is}\:\:{V}=\:\frac{\mathrm{1}}{\mathrm{3}}\underset{{S}\:} {\int\int}{r}\mathrm{cos}\:\theta{dA}\:. \\ $$$$\theta\:{being}\:{the}\:{angle}\:{between}\:{the} \\ $$$${position}\:{vector}\:{of}\:{a}\:{point}\:{P}\:\:{on} \\ $$$${the}\:{surface},\:{and}\:{the}\:{outer}\:{normal} \\ $$$${to}\:{the}\:{surface}\:{at}\:{P}. \\ $$$${r}\:{is}\:{the}\:{distance}\:{of}\:{point}\:{P}\:{from}…
Question Number 88928 by mathmax by abdo last updated on 13/Apr/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} \:\:+{x}^{\mathrm{2}} \:\:+\mathrm{3}\right)^{\mathrm{2}} } \\ $$ Commented by mathmax by abdo last…
Question Number 88927 by mathmax by abdo last updated on 13/Apr/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left(\mid{arctanx}\mid\right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 88929 by mathmax by abdo last updated on 13/Apr/20 $${cakculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({ch}\left({x}\right)\right)}{\mathrm{4}+{x}^{\mathrm{2}} }{dx} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 154437 by ArielVyny last updated on 18/Sep/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {arcos}\left(\frac{{cosx}}{\mathrm{1}+\mathrm{2}{cosx}}\right){dx} \\ $$ Answered by phanphuoc last updated on 18/Sep/21 $${put}\:{x}={tan}\left({t}/\mathrm{2}\right) \\ $$$$ \\…
Question Number 88902 by M±th+et£s last updated on 13/Apr/20 $$\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} {ln}\mid{x}\mid\:{dx} \\ $$ Commented by abdomathmax last updated on 13/Apr/20 $$\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \:{ln}\mid{x}\mid{dx}\:=\left[{xlnx}−{x}\right]_{\frac{\mathrm{1}}{{e}}} ^{{e}}…
Question Number 154421 by peter frank last updated on 18/Sep/21 $$\int\left[\left(\frac{\mathrm{x}}{\mathrm{e}}\right)^{\mathrm{x}} +\left(\frac{\mathrm{e}}{\mathrm{x}}\right)^{\mathrm{x}} \right]\mathrm{ln}\:\mathrm{xdx} \\ $$ Answered by puissant last updated on 18/Sep/21 $${Q}=\int\left[\left(\frac{{x}}{{e}}\right)^{{x}} +\left(\frac{{e}}{{x}}\right)^{{x}} \right]{lnx}\:{dx}\:…
Question Number 154422 by peter frank last updated on 18/Sep/21 $$\int\frac{\mathrm{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta+\mathrm{b}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta}{\mathrm{a}^{\mathrm{4}} \mathrm{sin}\:^{\mathrm{2}} \theta+\mathrm{b}^{\mathrm{4}} \mathrm{cos}\:^{\mathrm{2}} \theta}\mathrm{d}\theta \\ $$ Terms of Service Privacy…
Question Number 154409 by mnjuly1970 last updated on 18/Sep/21 $$ \\ $$$$\:\:{nice}\:{calculus}.. \\ $$$$\:\:\:\:\:{prove}\:\:{that}\:: \\ $$$$\: \\ $$$$\:\mathrm{I}:=\int_{\mathrm{0}} ^{\:\infty} \frac{\:\left(\mathrm{1}+{e}^{\:−{x}} \:\right){sin}^{\:\mathrm{2}} \left({x}\right)}{{x}^{\:\frac{\mathrm{3}}{\mathrm{2}}} }\:=\sqrt{\mathrm{2}\pi}\:\left(\:\mathrm{1}+\:\sqrt{\sqrt{\mathrm{2}}\:−\:\mathrm{1}}\:\right) \\ $$$$\:{m}.{n}…