Menu Close

Category: Integration

find-A-0-cos-x-x-2-x-1-2-dx-with-gt-0-2-find-the-value-of-0-cos-3x-x-2-x-1-2-dx-

Question Number 88930 by mathmax by abdo last updated on 13/Apr/20 $${find}\:{A}_{\lambda} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\lambda{x}\right)}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:{with}\:\lambda>\mathrm{0} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\mathrm{3}{x}\right)}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$…

Show-that-volume-of-a-region-of-space-bounded-by-a-boundary-surface-S-is-V-1-3-S-rcos-dA-being-the-angle-between-the-position-vector-of-a-point-P-on-the-surface-and-the-outer-normal-to

Question Number 23393 by ajfour last updated on 29/Oct/17 $${Show}\:{that}\:{volume}\:{of}\:{a}\:{region} \\ $$$${of}\:{space}\:{bounded}\:{by}\:{a}\:{boundary} \\ $$$${surface}\:{S}\:{is}\:\:{V}=\:\frac{\mathrm{1}}{\mathrm{3}}\underset{{S}\:} {\int\int}{r}\mathrm{cos}\:\theta{dA}\:. \\ $$$$\theta\:{being}\:{the}\:{angle}\:{between}\:{the} \\ $$$${position}\:{vector}\:{of}\:{a}\:{point}\:{P}\:\:{on} \\ $$$${the}\:{surface},\:{and}\:{the}\:{outer}\:{normal} \\ $$$${to}\:{the}\:{surface}\:{at}\:{P}. \\ $$$${r}\:{is}\:{the}\:{distance}\:{of}\:{point}\:{P}\:{from}…

1-e-e-ln-x-dx-

Question Number 88902 by M±th+et£s last updated on 13/Apr/20 $$\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} {ln}\mid{x}\mid\:{dx} \\ $$ Commented by abdomathmax last updated on 13/Apr/20 $$\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \:{ln}\mid{x}\mid{dx}\:=\left[{xlnx}−{x}\right]_{\frac{\mathrm{1}}{{e}}} ^{{e}}…

x-e-x-e-x-x-ln-xdx-

Question Number 154421 by peter frank last updated on 18/Sep/21 $$\int\left[\left(\frac{\mathrm{x}}{\mathrm{e}}\right)^{\mathrm{x}} +\left(\frac{\mathrm{e}}{\mathrm{x}}\right)^{\mathrm{x}} \right]\mathrm{ln}\:\mathrm{xdx} \\ $$ Answered by puissant last updated on 18/Sep/21 $${Q}=\int\left[\left(\frac{{x}}{{e}}\right)^{{x}} +\left(\frac{{e}}{{x}}\right)^{{x}} \right]{lnx}\:{dx}\:…

nice-calculus-prove-that-I-0-1-e-x-sin-2-x-x-3-2-2pi-1-2-1-m-n-

Question Number 154409 by mnjuly1970 last updated on 18/Sep/21 $$ \\ $$$$\:\:{nice}\:{calculus}.. \\ $$$$\:\:\:\:\:{prove}\:\:{that}\:: \\ $$$$\: \\ $$$$\:\mathrm{I}:=\int_{\mathrm{0}} ^{\:\infty} \frac{\:\left(\mathrm{1}+{e}^{\:−{x}} \:\right){sin}^{\:\mathrm{2}} \left({x}\right)}{{x}^{\:\frac{\mathrm{3}}{\mathrm{2}}} }\:=\sqrt{\mathrm{2}\pi}\:\left(\:\mathrm{1}+\:\sqrt{\sqrt{\mathrm{2}}\:−\:\mathrm{1}}\:\right) \\ $$$$\:{m}.{n}…