Question Number 151426 by peter frank last updated on 21/Aug/21 $$\mathrm{Express}\:\frac{\mathrm{1}}{\mathrm{5}×\mathrm{9}}\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fraction} \\ $$ Answered by liberty last updated on 21/Aug/21 $$\:\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}+\mathrm{4}\right)}=\frac{\mathrm{a}}{\mathrm{n}}+\frac{\mathrm{b}}{\mathrm{n}+\mathrm{4}}\: \\ $$$$\mathrm{a}=\:\left[\frac{\mathrm{1}}{\mathrm{n}+\mathrm{4}}\:\right]_{\mathrm{n}=\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{4}} \\…
Question Number 151423 by peter frank last updated on 21/Aug/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{dx}}{\mathrm{1}+\mathrm{tan}\:^{\mathrm{5}} \mathrm{x}} \\ $$ Answered by Olaf_Thorendsen last updated on 21/Aug/21 $$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}}…
Question Number 85875 by sakeefhasan05@gmail.com last updated on 25/Mar/20 $$\int\left(\frac{\mathrm{1}}{\mathrm{7}\left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{7}}\mathrm{e}^{\mathrm{x}} \right]}\right)\:\mathrm{dx} \\ $$ Answered by TANMAY PANACEA. last updated on 25/Mar/20 $$\frac{\mathrm{1}}{\mathrm{7}}\int\frac{{e}^{−{x}} {dx}}{{e}^{−{x}} −\frac{\mathrm{1}}{\mathrm{7}}}\:\left(\boldsymbol{{multiply}}\:\boldsymbol{{N}}_{{r}} {and}\:{D}_{{r}}…
Question Number 151415 by ArielVyny last updated on 20/Aug/21 $$\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right){arctg}\left({x}\right)}{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 20309 by NECC last updated on 25/Aug/17 $$\int{x}^{{x}} {dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 151376 by liberty last updated on 20/Aug/21 $$\:\:\:\:\int\:\frac{\mathrm{x}^{\mathrm{8}} +\mathrm{1}}{\:\sqrt{\mathrm{x}^{\mathrm{9}} −\mathrm{2x}^{\mathrm{8}} +\mathrm{1}}}\:\mathrm{dx}\:?\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 151374 by mnjuly1970 last updated on 20/Aug/21 $$ \\ $$$$\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{ln}\:\left(\frac{\mathrm{1}}{{x}}\:\right)}{\mathrm{1}\:+{e}^{\:\mathrm{2}{x}} }\:{dx}\:\overset{?} {=}\:\frac{\mathrm{3}}{\mathrm{2}}\:{ln}^{\:\mathrm{2}} \left(\:\mathrm{2}\:\right) \\ $$$$\:\:{m}.{n} \\ $$ Terms of Service Privacy…
Question Number 85839 by sahnaz last updated on 25/Mar/20 $$\int\mathrm{x}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}\mathrm{dx} \\ $$ Commented by jagoll last updated on 25/Mar/20 $$\int\:\frac{\mathrm{x}\:\mathrm{dx}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{d}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{1}/\mathrm{2}} }…
Question Number 20293 by tammi last updated on 25/Aug/17 $$\int\sqrt{\frac{{a}+{x}}{{x}}{dx}} \\ $$ Answered by $@ty@m last updated on 25/Aug/17 $$=\int\frac{{a}+{x}}{\:\sqrt{{x}\left({a}+{x}\right)}}{dx} \\ $$$$=\int\frac{{a}+{x}}{\:\sqrt{{ax}+{x}^{\mathrm{2}} }}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{2}{x}+{a}+{a}}{\:\sqrt{{ax}+{x}^{\mathrm{2}}…
Question Number 85828 by M±th+et£s last updated on 25/Mar/20 $$\int\frac{\mathrm{1}}{{x}+{cot}\left({x}\right)}\:{dx} \\ $$ Answered by mind is power last updated on 26/Mar/20 $${not}\:{found}\:\:{only}\:{withe}\:{Series}\: \\ $$$${have}\:{you}\:{a}\:{solutions}\:{sir}\:? \\…