Menu Close

Category: Integration

partial-fraction-2x-2-5x-9-x-2-x-1-dx-

Question Number 20241 by tammi last updated on 24/Aug/17 $${partial}\:{fraction} \\ $$$$\int\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{9}}{\:\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}{dx} \\ $$ Answered by $@ty@m last updated on 25/Aug/17 $$=\int\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}+\mathrm{7}{x}−\mathrm{7}−\mathrm{4}}{\:\sqrt{{x}^{\mathrm{2}}…

Question-85776

Question Number 85776 by M±th+et£s last updated on 24/Mar/20 Answered by MJS last updated on 24/Mar/20 $$\int\frac{{a}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:+\mathrm{2}{b}\:\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}\:+{c}\:\mathrm{cos}^{\mathrm{2}} \:{x}}{\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:\rightarrow\:{dx}=\frac{\mathrm{2}}{{t}^{\mathrm{2}} +\mathrm{1}}{dt}\right] \\ $$$$=−\mathrm{2}\int\frac{{ct}^{\mathrm{4}} −\mathrm{4}{bt}^{\mathrm{3}}…

2x-3-dx-x-2-4x-7-

Question Number 20239 by tammi last updated on 24/Aug/17 $$\int\frac{\left(\mathrm{2}{x}+\mathrm{3}\right){dx}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{7}}} \\ $$ Answered by $@ty@m last updated on 25/Aug/17 $$=\int\frac{\mathrm{2}{x}+\mathrm{4}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{7}}}{dx} \\ $$$$=\int\frac{\mathrm{2}{x}+\mathrm{4}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{7}}}{dx}−\int\frac{{dx}}{\:\sqrt{\left({x}+\mathrm{2}\right)^{\mathrm{2}}…

dx-x-2-x-1-

Question Number 20238 by tammi last updated on 24/Aug/17 $$\int\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$ Commented by tammi last updated on 24/Aug/17 $${this}\:{answer}\:{is}\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)+{c} \\ $$$${i}\:{know}\:{the}\:{answer}\:{but}\:{can}\:{not}\:{solve}\:{this}\:{prblm}..{help} \\…

Question-20230

Question Number 20230 by ajfour last updated on 24/Aug/17 Commented by ajfour last updated on 27/Aug/17 $${Find}\:{the}\:{area}\:{of}\:{that}\:{part}\:{of}\:{the} \\ $$$${surface}\:{of}\:{the}\:{sphere}\:: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={a}^{\mathrm{2}} \:{which}\:{is}\:{cut}\:{out}\:{by}…