Question Number 88606 by TawaTawa1 last updated on 11/Apr/20 Commented by jagoll last updated on 12/Apr/20 $$\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{line}\: \\ $$$$\mathrm{y}\:=\:\mathrm{mx}\:\Rightarrow\mathrm{4t}−\mathrm{t}^{\mathrm{2}} \:=\:\mathrm{m}.\mathrm{t}\: \\ $$$$\mathrm{m}\:=\:\mathrm{4}−\mathrm{t}\:\Rightarrow\mathrm{y}\:=\:\left(\mathrm{4}−\mathrm{t}\right)\mathrm{x} \\ $$$$\mathrm{line}\:\mathrm{and}\:\mathrm{parabolic}\:\mathrm{intersect} \\…
Question Number 154143 by mnjuly1970 last updated on 14/Sep/21 Answered by phanphuoc last updated on 14/Sep/21 $${u}=−{lnx}\rightarrow{e}^{−{u}} ={x}\rightarrow−{e}^{−{u}} {du}={dx} \\ $$$$\Omega=\int_{\infty} ^{\mathrm{0}} \frac{{e}^{−{x}} {sinx}}{\mathrm{1}+{e}^{−\mathrm{2}{x}} }\left(−{e}^{−{x}}…
Question Number 88603 by hovero clinton last updated on 11/Apr/20 Answered by TANMAY PANACEA. last updated on 11/Apr/20 $${x}={sina} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{lnsina}×{cosada}}{\left(\mathrm{1}+\mathrm{8}{sin}^{\mathrm{2}} {a}\right){cosa}} \\…
Question Number 154142 by EDWIN88 last updated on 14/Sep/21 Answered by mr W last updated on 14/Sep/21 $${y}={a}\left({x}−\mathrm{4}\right)\left({x}+\mathrm{2}\right)^{\mathrm{2}} \\ $$$$\mathrm{8}={a}\left(−\mathrm{4}\right)\left(+\mathrm{2}\right)^{\mathrm{2}} \:\Rightarrow{a}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${y}=−\frac{\mathrm{1}}{\mathrm{2}}\left({x}−\mathrm{4}\right)\left({x}+\mathrm{2}\right)^{\mathrm{2}} \\ $$$$\frac{{dy}}{{dx}}=−\frac{\mathrm{1}}{\mathrm{2}}\left[\left({x}+\mathrm{2}\right)^{\mathrm{2}}…
Question Number 23061 by nawroozdawry last updated on 25/Oct/17 $$\int_{\mathrm{0}} ^{\infty} \mathrm{j}_{\mathrm{4}} \left(\mathrm{x}\right)\mathrm{dx}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 88586 by M±th+et£s last updated on 11/Apr/20 $$\int\frac{\sqrt{{cos}\left(\mathrm{2}{x}\right)+\mathrm{3}}}{{cos}\left({x}\right)}{dx} \\ $$ Answered by TANMAY PANACEA. last updated on 11/Apr/20 $$\int\frac{{cos}\mathrm{2}{x}+\mathrm{3}}{{cosx}\sqrt{\mathrm{3}+{cos}\mathrm{2}{x}}}{dx} \\ $$$$\int\frac{\mathrm{2}{cos}^{\mathrm{2}} {x}+\mathrm{2}}{{cosx}\sqrt{\mathrm{2}{cos}^{\mathrm{2}} {x}+\mathrm{2}}}…
Question Number 88569 by M±th+et£s last updated on 11/Apr/20 Commented by M±th+et£s last updated on 11/Apr/20 $${prove}\:{that} \\ $$$$ \\ $$$$\because\emptyset\:{lerch}\:{transcendent} \\ $$ Answered by…
Question Number 88555 by M±th+et£s last updated on 11/Apr/20 $${slove}\: \\ $$$$\lceil\frac{{x}}{{a}}\rceil<{a}\:\:\: \\ $$$${when}\:{a}>\mathrm{1} \\ $$$$\lceil…\rceil\:{is}\:{ceil}\:{function} \\ $$ Answered by mr W last updated on…
Question Number 154080 by iloveisrael last updated on 14/Sep/21 $$\:\:\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:^{\mathrm{2}} \left(\frac{\mathrm{1}+\mathrm{sin}\:{t}}{\mathrm{1}−\mathrm{sin}\:{t}}\right){dt} \\ $$ Answered by mindispower last updated on 14/Sep/21 $$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{4}{ln}^{\mathrm{2}}…
Question Number 88547 by ajfour last updated on 11/Apr/20 $${prove}\:{for}\:\left(\mathrm{0}<{a}<\mathrm{2}\right) \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \frac{{x}^{{a}−\mathrm{1}} {dx}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }\:=\:\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}\mathrm{cos}\:\left(\frac{\mathrm{2}\pi{a}+\pi}{\mathrm{6}}\right)\mathrm{cosec}\:\pi{a}\:. \\ $$ Answered by mind is power last updated…