Menu Close

Category: Integration

Is-definite-integral-can-have-negative-value-Because-I-think-a-b-f-x-dx-is-total-area-below-graph-f-x-from-x-a-until-x-b-so-it-can-t-be-negative-

Question Number 20202 by Joel577 last updated on 24/Aug/17 $$\mathrm{Is}\:\mathrm{definite}\:\mathrm{integral}\:\mathrm{can}\:\mathrm{have}\:\mathrm{negative}\:\mathrm{value}? \\ $$$$\mathrm{Because}\:\mathrm{I}\:\mathrm{think}\:\int_{{a}} ^{{b}} {f}\left({x}\right)\:{dx}\:\mathrm{is}\:\mathrm{total}\:\mathrm{area}\:\mathrm{below} \\ $$$$\mathrm{graph}\:{f}\left({x}\right)\:\mathrm{from}\:{x}\:=\:{a}\:\mathrm{until}\:{x}\:=\:{b},\:\mathrm{so}\:\mathrm{it}\:\mathrm{can}'\mathrm{t} \\ $$$$\mathrm{be}\:\mathrm{negative} \\ $$ Commented by ajfour last updated…

r-1-1-r-1-r-r-2-1-4-r-2-1-4-

Question Number 151268 by rs4089 last updated on 19/Aug/21 $$\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{r}−\mathrm{1}} }{{r}}\left[\psi\left(\frac{{r}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}\right)−\psi\left(\frac{{r}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}\right)\right] \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

sin-x-cos-3x-sin-x-cos-2x-dx-

Question Number 85718 by M±th+et£s last updated on 24/Mar/20 $$\int\frac{{sin}\left({x}\right)−{cos}\left(\mathrm{3}{x}\right)}{{sin}\left({x}\right)−{cos}\left(\mathrm{2}{x}\right)}{dx} \\ $$ Answered by MJS last updated on 24/Mar/20 $$\int\frac{\mathrm{sin}\:{x}\:−\mathrm{cos}\:\mathrm{3}{x}}{\mathrm{sin}\:{x}\:−\mathrm{cos}\:\mathrm{2}{x}}{dx}= \\ $$$$=\int\frac{\mathrm{4cos}\:{x}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:−\mathrm{cos}\:{x}\:+\mathrm{sin}\:{x}}{−\mathrm{2cos}^{\mathrm{2}} \:{x}\:+\mathrm{sin}\:{x}\:+\mathrm{1}}{dx}= \\…

cosec-2-xdx-

Question Number 20166 by tammi last updated on 23/Aug/17 $$\int\mathrm{cosec}\:^{\mathrm{2}} {xdx} \\ $$ Answered by sma3l2996 last updated on 23/Aug/17 $${t}={cosecx}\Rightarrow{dt}=−\frac{{cosec}^{\mathrm{2}} {x}}{{secx}}{dx} \\ $$$${cosec}^{\mathrm{2}} {xdx}=−\frac{{tdt}}{\:\sqrt{{t}^{\mathrm{2}}…

please-solve-it-integrate-with-respect-to-x-5x-2-3x-2-2x-1-

Question Number 20167 by tammi last updated on 23/Aug/17 $${please}\:{solve}\:{it} \\ $$$${integrate}\:{with}\:{respect}\:{to}\:{x} \\ $$$$\int\frac{\mathrm{5}{x}−\mathrm{2}}{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}} \\ $$ Answered by ajfour last updated on 23/Aug/17 $$=\frac{\mathrm{1}}{\mathrm{3}}\int\frac{\left(\mathrm{5}/\mathrm{2}\right)\left(\mathrm{2}{x}+\mathrm{2}/\mathrm{3}\right)−\mathrm{11}/\mathrm{3}}{\left({x}+\mathrm{1}/\mathrm{3}\right)^{\mathrm{2}}…