Question Number 129996 by Eric002 last updated on 21/Jan/21 $$\int\frac{\sqrt[{\mathrm{5}}]{{x}^{\mathrm{2}} }}{\:\sqrt[{\mathrm{3}}]{\mathrm{1}+\sqrt{{x}^{\mathrm{5}} }}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 129991 by pipin last updated on 21/Jan/21 $$\:\int\:\left(\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \right)\left(\frac{\boldsymbol{\mathrm{x}}^{\mathrm{6}} +\boldsymbol{\mathrm{x}}^{\mathrm{5}} +\mathrm{5}\boldsymbol{\mathrm{x}}^{\mathrm{4}} }{\left(\mathrm{1}+\boldsymbol{\mathrm{x}}\right)^{\mathrm{6}} }\right)\boldsymbol{\mathrm{dx}}\:=\:… \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 129989 by liberty last updated on 21/Jan/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded}\:\mathrm{xy}^{\mathrm{2}} \:=\:\mathrm{4a}^{\mathrm{2}} \left(\mathrm{2a}−\mathrm{x}\right) \\ $$$$\mathrm{and}\:\mathrm{its}\:\mathrm{asymptotes}. \\ $$ Answered by EDWIN88 last updated on 21/Jan/21 $$\mathrm{equating}\:\mathrm{to}\:\mathrm{zero}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{highest} \\…
Question Number 64448 by mathmax by abdo last updated on 18/Jul/19 $${calculate}\:{lim}_{{x}\rightarrow\pi} \:\:\int_{\frac{\pi}{\mathrm{2}}} ^{{x}} \:\:\:\frac{{dx}}{\mathrm{1}+{sinx}−{cosx}} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 129978 by MJS_new last updated on 21/Jan/21 $$\mathrm{is}\:\mathrm{this}\:\mathrm{true}\:\mathrm{for}\:{n}\in\mathbb{N}^{\bigstar} ?\:\mathrm{someone}\:\mathrm{please}\:\mathrm{prove} \\ $$$$\mathrm{or}\:\mathrm{falsify}! \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\mathrm{e}^{−{x}^{\mathrm{2}{n}} } {dx}=\Gamma\:\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}{n}} \\ $$ Answered by Dwaipayan Shikari…
Question Number 129972 by mnjuly1970 last updated on 21/Jan/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….{nice}\:\:{calculus}… \\ $$$$\:\:{evaluation}: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} {t}^{\mathrm{2}} {e}^{−{t}} {ln}\left({t}\right){dt}=?? \\ $$$$\:\:{solution}: \\ $$$$\:\:\:{f}\left({s}\right)=\int_{\mathrm{0}} ^{\:\infty}…
Question Number 129975 by Algoritm last updated on 21/Jan/21 Answered by Olaf last updated on 21/Jan/21 $$\Omega\:=\:\int_{−\infty} ^{+\infty} {e}^{−\left(\frac{{x}}{{a}}\right)^{\mathrm{2}} } {dx} \\ $$$$\Omega\:=\:\mathrm{2}\mid{a}\mid\int_{\mathrm{0}} ^{+\infty} {e}^{−{u}^{\mathrm{2}}…
Question Number 64429 by mathmax by abdo last updated on 17/Jul/19 $${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{{t}+{x}+\sqrt{{t}^{\mathrm{2}} \:+\mathrm{1}}}\:\:\:\left({x}\:{real}\:{parametre}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicite}\:{form}\:{forf}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){detemine}\:{also}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\left({t}+{x}+\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){give}\:{f}^{\left({n}\right)}…
Question Number 64419 by turbo msup by abdo last updated on 17/Jul/19 $$\left.\mathrm{1}\right)\:{find}\:\int\:\:\frac{{dx}}{{x}−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{{x}−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$ Commented by mathmax by…
Question Number 64418 by turbo msup by abdo last updated on 17/Jul/19 $$\left.\mathrm{1}\right){find}\:\int\:\:\:\frac{{dx}}{{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$ Commented by Prithwish sen…