Menu Close

Category: Integration

x-1-1-x-1-1-dx-

Question Number 85596 by M±th+et£s last updated on 23/Mar/20 $$\int\frac{\sqrt{{x}+\mathrm{1}}−\mathrm{1}}{\:\sqrt{{x}−\mathrm{1}}+\mathrm{1}}\:{dx} \\ $$ Commented by mathmax by abdo last updated on 23/Mar/20 $${A}\:=\int\:\:\frac{\sqrt{{x}+\mathrm{1}}−\mathrm{1}}{\:\sqrt{{x}−\mathrm{1}}+\mathrm{1}}{dx}\:\:\:\:{chagement}\:\sqrt{{x}−\mathrm{1}}+\mathrm{1}\:={t}\:{give}\:\sqrt{{x}−\mathrm{1}}={t}−\mathrm{1}\:\Rightarrow \\ $$$${x}−\mathrm{1}\:=\left({t}−\mathrm{1}\right)^{\mathrm{2}} \:\Rightarrow{dx}\:=\mathrm{2}\left({t}−\mathrm{1}\right){dt}\:\Rightarrow…

1-4u-4u-2-2u-2-du-

Question Number 85591 by sahnaz last updated on 23/Mar/20 $$\int\frac{\mathrm{1}+\mathrm{4u}}{−\mathrm{4u}^{\mathrm{2}} +\mathrm{2u}+\mathrm{2}}\mathrm{du} \\ $$$$ \\ $$ Answered by john santu last updated on 23/Mar/20 $$−\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{2}}{\mathrm{3}\left(\mathrm{2}{u}+\mathrm{1}\right)}{du}+\int\:\frac{\mathrm{5}}{\mathrm{3}\left({u}−\mathrm{1}\right)}{du} \\…

0-2pi-dx-2-cos-x-

Question Number 85568 by jagoll last updated on 23/Mar/20 $$\int\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\:}}\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{2}}−\mathrm{cos}\:\mathrm{x}} \\ $$ Commented by jagoll last updated on 23/Mar/20 $$\mathrm{I}\:=\:\int\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\:}}\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{2}}−\mathrm{cos}\:\mathrm{x}} \\…

Calculate-0-x-x-4-14x-2-1-5-4-dx-2-3-4-4-2pi-

Question Number 151068 by qaz last updated on 18/Aug/21 $$\mathrm{Calculate}\:\:::\:\int_{\mathrm{0}} ^{\infty} \frac{\sqrt{\mathrm{x}}}{\left(\mathrm{x}^{\mathrm{4}} +\mathrm{14x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{5}}{\mathrm{4}}} }\mathrm{dx}=\frac{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\mathrm{4}\sqrt{\mathrm{2}\pi}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Calculate-x-x-a-sin-pix-dx-2-a-1-a-pi-a-gt-0-

Question Number 151065 by qaz last updated on 18/Aug/21 $$\mathrm{Calculate}\:\:\:::\:\:\int_{−\infty} ^{+\infty} \frac{\Gamma\left(\mathrm{x}\right)}{\Gamma\left(\mathrm{x}+\mathrm{a}\right)}\mathrm{sin}\:\left(\pi\mathrm{x}\right)\mathrm{dx}=\frac{\mathrm{2}^{\mathrm{a}−\mathrm{1}} }{\Gamma\left(\mathrm{a}\right)}\pi\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{a}>\mathrm{0}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com