Question Number 87994 by abdomathmax last updated on 07/Apr/20 $${vcalculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}\left[{x}\right]+\mathrm{3}\right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 87993 by abdomathmax last updated on 07/Apr/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({x}+\mathrm{2}\right)^{\mathrm{2}} \left({x}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$ Commented by mathmax by abdo last updated on…
Question Number 87977 by Ar Brandon last updated on 07/Apr/20 $$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}\:\mathrm{2}{x}}{\mathrm{1}+\mathrm{2}^{{x}} }{dx} \\ $$ Commented by abdomathmax last updated on 08/Apr/20 $${at}\:{form}\:{of}\:{serie} \\…
Question Number 87969 by M±th+et£s last updated on 07/Apr/20 Answered by mind is power last updated on 07/Apr/20 $$=\underset{{k}\geqslant\mathrm{1}} {\sum}\int_{{k}} ^{\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}}} \frac{\sqrt{\left.{x}−\lfloor{x}\right]}}{\left[\mathrm{2}{x}\right]^{\mathrm{2}} }{d}\underset{={S}} {{x}}+\underset{{k}\geqslant\mathrm{1}} {\sum}\int_{\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}}}…
Question Number 87930 by Ajao yinka last updated on 07/Apr/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 87920 by M±th+et£s last updated on 07/Apr/20 Commented by M±th+et£s last updated on 07/Apr/20 $${prove} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 87910 by mohamedhope last updated on 07/Apr/20 $$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 87903 by mathmax by abdo last updated on 07/Apr/20 $${find}\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({xy}\right)}{\left({x}+{y}\right)^{\mathrm{2}} }{dxdy} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 87902 by mathmax by abdo last updated on 07/Apr/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} }{\left({x}+{y}\right)^{\mathrm{2}} }{dxdy} \\ $$ Terms of Service…
Question Number 87901 by mathmax by abdo last updated on 07/Apr/20 $${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\frac{{arctan}\left({x}+{y}\right)}{{x}+{y}}{dxdy} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com