Menu Close

Category: Integration

1-find-f-a-0-dx-x-4-a-with-a-gt-0-2-find-g-a-0-dx-x-4-a-2-3-find-value-of-integrals-0-dx-x-4-1-0-dx-2x-4-8-0-dx-x-4-1-2-an

Question Number 85160 by mathmax by abdo last updated on 19/Mar/20 $$\left.\mathrm{1}\right)\:{find}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+{a}}\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} \:+{a}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{find}\:{value}\:{of}\:{integrals}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}}…

calculate-U-n-1-n-1-n-x-2-1-x-1-x-dx-n-integr-and-n-2-2-find-nature-of-U-n-

Question Number 85158 by mathmax by abdo last updated on 19/Mar/20 $${calculate}\:{U}_{{n}} =\:\int_{−\frac{\mathrm{1}}{{n}}} ^{\frac{\mathrm{1}}{{n}}} \:{x}^{\mathrm{2}} \sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}{dx}\:\:\:\left({n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:\Sigma\:{U}_{{n}} \\ $$ Terms of Service Privacy Policy…

Question-150656

Question Number 150656 by mnjuly1970 last updated on 14/Aug/21 Answered by Ar Brandon last updated on 14/Aug/21 $$\Omega=\frac{\mathrm{1}}{\mathrm{2}}\left(\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\Gamma\left(\mathrm{1}\right)+\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\right) \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\pi}+\mathrm{1}+\frac{\sqrt{\pi}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{3}\sqrt{\pi}+\mathrm{2}\right) \\ $$ Commented by mnjuly1970…

Question-150655

Question Number 150655 by mnjuly1970 last updated on 14/Aug/21 Answered by Ar Brandon last updated on 14/Aug/21 $$\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\sqrt{{x}}} \mathrm{ln}\left(\sqrt{{x}}\right)}{{x}^{\frac{\mathrm{1}}{\mathrm{4}}} }{dx}\underset{{x}={u}^{\mathrm{2}} } {=}\mathrm{2}\int_{\mathrm{0}} ^{\infty}…

Question-150647

Question Number 150647 by puissant last updated on 14/Aug/21 Answered by puissant last updated on 14/Aug/21 $${posons}\:\:{I}_{\mathrm{2}{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sint}\right)^{\mathrm{2}{n}} {dt} \\ $$$$=\frac{\mathrm{1}×\mathrm{3}×\mathrm{5}……×\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{2}×\mathrm{4}×\mathrm{6}×…..×\mathrm{2}{n}}×\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\:\:{I}_{\mathrm{2}{n}}…

pi-pi-x-2020-sin-x-cos-x-dx-8-find-pi-pi-x-2020-cos-x-dx-

Question Number 85097 by jagoll last updated on 19/Mar/20 $$\underset{−\pi} {\overset{\pi} {\int}}\:\mathrm{x}^{\mathrm{2020}} \:\left(\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)\:\mathrm{dx}\:=\:\mathrm{8} \\ $$$$\mathrm{find}\:\underset{−\pi} {\overset{\pi} {\int}}\:\mathrm{x}^{\mathrm{2020}} \:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}\:=\:? \\ $$ Answered by john santu last…