Menu Close

Category: Integration

x-2-1-x-4-dx-

Question Number 87279 by Ar Brandon last updated on 03/Apr/20 $$\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$ Commented by abdomathmax last updated on 03/Apr/20 $${complex}\:{method}\:\:{let}\:{decompose}\:{F}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} \:+\mathrm{1}}…

sin-5-d-

Question Number 21720 by Isse last updated on 01/Oct/17 $$\int{sin}^{\mathrm{5}} \theta{d}\theta \\ $$ Answered by sma3l2996 last updated on 02/Oct/17 $$=\int\left(\mathrm{1}−{cos}^{\mathrm{2}} {x}\right)^{\mathrm{2}} {sinxdx}=\int\left({sinx}−\mathrm{2}{sinxcos}^{\mathrm{2}} {x}+{sinxcos}^{\mathrm{4}} {x}\right){dx}…

pi-6-pi-3-1-2-cot-2-2-d-

Question Number 21707 by Isse last updated on 01/Oct/17 $$\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \frac{\mathrm{1}}{\mathrm{2}}{cot}^{\mathrm{2}} \mathrm{2}\theta{d}\theta \\ $$ Commented by Tikufly last updated on 01/Oct/17 $$\mathrm{I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \left(\mathrm{cosec}^{\mathrm{2}}…

Solve-0-1-x-sin-ln-x-dx-1-5-solution-i-b-p-x-2-2-sin-ln-x-0-1-1-2-0-1-x-cos-ln-x-dx-

Question Number 152778 by mnjuly1970 last updated on 01/Sep/21 $$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Solve}\:………. \\ $$$$\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}.\:{sin}\left(\:{ln}\:\left({x}\:\right)\right){dx}\:\overset{?} {=}\:\frac{−\mathrm{1}}{\:\:\:\mathrm{5}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{solution}…. \\ $$$$\:\:\:\:\:\Omega\::\overset{{i}.{b}.{p}} {=}\left[\:\frac{{x}^{\:\mathrm{2}} }{\mathrm{2}}\:.\:{sin}\left({ln}\left({x}\right)\right)\right]_{\mathrm{0}} ^{\:\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}}…

2cot-2-2t-

Question Number 21701 by Isse last updated on 01/Oct/17 $$\int\mathrm{2}{cot}^{\mathrm{2}} \mathrm{2}{t} \\ $$ Commented by Tikufly last updated on 01/Oct/17 $$\mathrm{I}\:\mathrm{think}\:\mathrm{your}\:\mathrm{question}\:\mathrm{should} \\ $$$$\mathrm{be}\:\int\mathrm{2cot}^{\mathrm{2}} \mathrm{2tdt} \\…

sec-d-1-sec-

Question Number 21679 by Arnab Maiti last updated on 30/Sep/17 $$\int\frac{\mathrm{sec}\theta\:\mathrm{d}\theta}{\mathrm{1}−\mathrm{sec}\theta} \\ $$ Answered by alex041103 last updated on 30/Sep/17 $${First}\:{we}\:{make}\:{the}\:{following}\:{transformations}: \\ $$$$\int\frac{\mathrm{sec}\theta\:\mathrm{d}\theta}{\mathrm{1}−\mathrm{sec}\theta}=\int\frac{\frac{\mathrm{1}}{{cos}\theta}}{\mathrm{1}−\frac{\mathrm{1}}{{cos}\theta}}{d}\theta= \\ $$$$=\int\frac{\frac{\mathrm{1}}{{cos}\theta}}{\mathrm{1}−\frac{\mathrm{1}}{{cos}\theta}}\:\frac{{cos}\theta}{{cos}\theta}{d}\theta=…