Question Number 84561 by M±th+et£s last updated on 14/Mar/20 $$\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{{cos}\left({x}−{y}\right)−{cos}\left({x}\right)}{{xy}}{dx}\:{dy} \\ $$ Answered by mind is power last updated on 16/Mar/20…
Question Number 84557 by Power last updated on 14/Mar/20 Commented by jagoll last updated on 14/Mar/20 $$\mathrm{ln}\left(\mathrm{cos}\:\mathrm{x}\right)\:=\:\mathrm{u}\:\Rightarrow\:\mathrm{cos}\:\mathrm{x}\:=\:\mathrm{e}^{\mathrm{u}} \\ $$$$−\mathrm{sin}\:\mathrm{x}\:\mathrm{dx}\:=\:\mathrm{e}^{\mathrm{u}} \:\mathrm{du}\: \\ $$$$\mathrm{dx}\:=\:\frac{−\mathrm{e}^{\mathrm{u}} }{\mathrm{sin}\:\mathrm{x}}\:\mathrm{dx}\:=\:\frac{−\mathrm{e}^{\mathrm{u}} \:\mathrm{du}}{\:\sqrt{\mathrm{1}−\mathrm{e}^{\mathrm{2u}} }}…
Question Number 84556 by jagoll last updated on 14/Mar/20 $$\int\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2x}+\mathrm{2}}{\:\sqrt{\mathrm{4x}^{\mathrm{2}} +\mathrm{8x}+\mathrm{13}}}\right)\:\mathrm{dx} \\ $$ Commented by john santu last updated on 14/Mar/20 $$\int\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2x}+\mathrm{2}}{\:\sqrt{\left(\mathrm{2x}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{9}}}\right)\:\mathrm{dx}…
Question Number 84549 by Power last updated on 14/Mar/20 Answered by TANMAY PANACEA last updated on 14/Mar/20 $$\int_{\mathrm{0}} ^{{n}\pi} \mid{sinnx}\mid{dx} \\ $$$$\int_{\mathrm{0}} ^{\pi} \mid{sinx}\mid{dx}+\int_{\pi} ^{\mathrm{2}\pi}…
Question Number 150079 by puissant last updated on 09/Aug/21 $$\int\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$ Answered by Ar Brandon last updated on 09/Aug/21 $$\int\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{{px}+{q}}{{x}^{\mathrm{2}}…
Question Number 150064 by n0y0n last updated on 09/Aug/21 $$\mathrm{How}\:\mathrm{can}\:\mathrm{i}\:\mathrm{evaluate}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\: \\ $$$$\:\:\int_{\mathrm{2}} ^{\:\mathrm{4}} \frac{\mathrm{e}^{\mathrm{t}} }{\mathrm{t}}\mathrm{dt}\:=\:? \\ $$ Answered by Ar Brandon last updated…
Question Number 84505 by mathmax by abdo last updated on 13/Mar/20 $$\left.\mathrm{2}\right){calculate}\:\:\:{I}\left(\xi\right)\:=\int_{\xi} ^{\mathrm{1}} \:\:\:\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}+\xi{x}^{\mathrm{2}} −\sqrt{\mathrm{1}−\xi{x}^{\mathrm{2}} }}} \\ $$$$\left.\mathrm{1}\right){find}\:{lim}_{\xi\rightarrow\mathrm{0}} \:\:{I}\left(\xi\right) \\ $$ Commented by mathmax by…
Question Number 150037 by RoswelCod2003 last updated on 09/Aug/21 $${Random}\:{Problem}: \\ $$$$\underset{\frac{\pi}{\mathrm{4}}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\left(−\mathrm{7sin}\:{x}\:+\:\mathrm{3cos}\:{x}\right)\:{dx} \\ $$$$ \\ $$$${By}\:{getting}\:{the}\:{antiderivative}\:{of}\:{the}\:{trigonometric}\:{functions}: \\ $$$$\int\:\mathrm{sin}\left({x}\right)\:{dx}\:=\:−\mathrm{cos}\:{x}\:+\:{c} \\ $$$$\int\:\mathrm{cos}\left({x}\right)\:{dx}\:=\:\mathrm{sin}\:{x}\:+\:{c} \\ $$$$=\:−\mathrm{7}\:\int\:\mathrm{sin}\:{x}\:\:+\:\:\mathrm{3}\:\int\:\mathrm{cos}\:{x}\:\underset{\frac{\pi}{\mathrm{4}}} {\overset{\frac{\pi}{\mathrm{2}}}…
Question Number 84498 by M±th+et£s last updated on 13/Mar/20 $$\int\sqrt{{x}}\:{cos}\sqrt{{x}}\:{dx} \\ $$ Commented by jagoll last updated on 13/Mar/20 $$\int\:\frac{{x}\:\mathrm{cos}\:\sqrt{{x}}}{\:\sqrt{{x}}}\:{dx}\: \\ $$$${let}\:\sqrt{{x}}\:=\:{t}\:\Rightarrow\:{x}={t}^{\mathrm{2}} \\ $$$${dx}\:=\:\mathrm{2}{t}\:{dt} \\…
Question Number 84497 by M±th+et£s last updated on 13/Mar/20 $$\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{5}} }\:{dx} \\ $$$$ \\ $$ Commented by mathmax by abdo last updated on 13/Mar/20…