Question Number 152088 by rexford last updated on 25/Aug/21 $$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \mid{sinx}−{cosx}\mid \\ $$$${please}\:{help}\:{me}\:{out} \\ $$ Answered by Olaf_Thorendsen last updated on 25/Aug/21 $$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}}…
Question Number 86518 by john santu last updated on 29/Mar/20 $$\int\:\:\frac{\mathrm{dx}}{\mathrm{e}^{\mathrm{2x}} −\mathrm{5e}^{\mathrm{x}} } \\ $$ Commented by john santu last updated on 29/Mar/20 $$\Rightarrow\:\int\:\:\frac{\mathrm{dx}}{\mathrm{e}^{\mathrm{x}} \:\left(\mathrm{e}^{\mathrm{x}}…
Question Number 152047 by talminator2856791 last updated on 25/Aug/21 $$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{x}^{\mathrm{2}} +\mathrm{1}}{\:\sqrt{{x}^{{x}} }}\:{dx} \\ $$$$\: \\ $$ Terms of Service Privacy Policy…
Question Number 86491 by john santu last updated on 29/Mar/20 $$\int\:\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{x}^{\mathrm{4}} +\mathrm{1}}\:\mathrm{dx}\:?\: \\ $$ Commented by john santu last updated on 29/Mar/20 $$\mathrm{dear}\:\mathrm{prof}\:\mathrm{mr}\:\mathrm{mjs}.\:\mathrm{what}\:\mathrm{the}\:\mathrm{super} \\…
Question Number 86484 by Ar Brandon last updated on 28/Mar/20 $$\int\frac{{x}^{\mathrm{6}} }{\mathrm{1}+{x}^{\mathrm{12}} }{dx} \\ $$ Commented by Ar Brandon last updated on 29/Mar/20 Hi mathmax, I don't understand the second line of your solution. How did you do that ? Commented…
Question Number 86480 by M±th+et£s last updated on 28/Mar/20 $$\int_{\mathrm{0}} ^{\infty} \left({x}\:{e}^{\mathrm{1}−{x}} \:−\lfloor{x}\rfloor{e}^{\mathrm{1}−\lfloor{x}\rfloor} \right){dx} \\ $$ Commented by abdomathmax last updated on 28/Mar/20 $${I}\:=\int_{\mathrm{0}} ^{\infty}…
Question Number 20939 by Hitler last updated on 08/Sep/17 $$\mathrm{Demostration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{an}\:\mathrm{sphere}\:\mathrm{V}=\frac{\mathrm{4}\pi\mathrm{r}^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{r}^{\mathrm{2}} \:\mathrm{We}\:\mathrm{divide}\:\mathrm{the}\:\mathrm{sphere}\:\mathrm{in}\:\mathrm{8}\:\mathrm{parts}.\:\mathrm{So}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{a}\:\mathrm{part}\:\mathrm{is} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{r}} \int_{\mathrm{0}} ^{\:\sqrt{\mathrm{r}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }} \sqrt{\mathrm{r}^{\mathrm{2}}…
Question Number 86472 by Chi Mes Try last updated on 28/Mar/20 Answered by TANMAY PANACEA. last updated on 28/Mar/20 $$\int_{−\mathrm{1}} ^{\mathrm{1}} {xdx}−\int_{−\mathrm{1}} ^{\mathrm{1}} \left[{x}\right]{dx} \\…
Question Number 86447 by Chi Mes Try last updated on 28/Mar/20 Commented by mathmax by abdo last updated on 29/Mar/20 $${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({t}\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}}…
Question Number 20908 by j.masanja06@gmail.com last updated on 07/Sep/17 $${integrate}\:{with}\:{respect}\:{to}\:{x}\: \\ $$$$\int\left(\frac{\mathrm{2}{x}+\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{8}}\right){dx} \\ $$ Answered by Joel577 last updated on 07/Sep/17 $${I}\:=\:\int\:\frac{\mathrm{2}{x}\:+\:\mathrm{1}}{\left({x}\:+\:\mathrm{2}\right)^{\mathrm{2}} \:+\:\mathrm{4}}\:{dx} \\…